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Chapter 1

Introduction

The production of jets in association with a Z/γ∗ boson is an example of an important class
of processes at hadron colliders, namely vector boson+jet (V +jet) production. Comparisons
of measurements of this class of processes with theory predictions constitute an important,
fundamental test of the Standard Model of particle physics, and of the theory of QCD in par-
ticular. While having a smaller cross section than other V +jet processes, Z/γ∗(→ e+e−)+jets
production, with Z/γ∗ → e+e−/µ+µ−, has a distinct experimental signature allowing for
measurements characterized by low backgrounds and a direct, precise measurement of the
properties of the decay products of the Z/γ∗ boson.

In this thesis, several new measurements of the properties of jets produced in association
with a Z/γ∗ boson in pp̄ collisions at

√
s = 1.96 TeV are presented. The cross section

for Z/γ∗(→ e+e−)+N jet production (N ≤ 3) is measured, differential in the transverse
momentum of the N th jet in the event, normalized to the inclusive Z/γ∗ cross section. Also,
the cross section for Z/γ∗(→ e+e−)+N jets (N ≥ 1) is measured, differential in the difference
in azimuthal angle between the di-electron system and any jet in the event, normalized to
unity. The data used in the measurements were collected by the DØ experiment located at
the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to an
integrated luminosity of 1.04 fb−1.

The measured jet transverse momentum spectra are compared with the predictions of
perturbative calculations at the next-to-leading order in the strong coupling constant. Given
the low sensitivity of the calculations to model parameters, these comparisons represent a
stringent test of perturbative QCD.

One of the main goals currently being pursued in particle physics is the discovery of the only
particle predicted by the Standard Model which has so far no been detected experimentally,
namely the Higgs boson. It is assumed that the ATLAS and CMS experiments located at
the Large Hadron Collider (LHC), a proton-proton collider at

√
s = 14 TeV, will be able to

detect the Higgs boson, or rule out its existence, within the next few years. The collisions
delivered by the LHC will also be used to perform a long range of searches for other new
particles, for instance particles predicted by models based on the principle of supersymmetry.
The associated production of vector bosons with jets has relatively large production rates
at the LHC and can produce a long list of different final states which can include charged
leptons, missing transverse energy, as well as light- and heavy-flavour jets. This makes V +jet
production a major source of background events to many searches for new particles.

Most techniques used for estimating the expected number of background events to searches
rely on passing the stable final-state particles of simulated hadron collisions generated using
a so-called event generator code, through a simulation of the experimental detector system.
The development of event generators which are capable of reliably predicting the properties
of jets produced in association with a core process, e.g. the production of a vector boson, has
been the subject of a large amount of research activity during the last ten years. These efforts

1



Chapter 1 Introduction

have led to the appearance of the CKKW and MLM algorithms which are implemented in
several event generators, among them sherpa and alpgen+pythia. The large data sample
collected by the DØ experiment during Run II offers an excellent opportunity for validating
these new event generators against experimental measurements of V +jet production. As
argued above, the Z/γ∗(→ e+e−)+jets process offers the combination of a clean experimental
signature and large production rates, making it the process of choice for these studies.

In Chapter 2 of this thesis, a short summary of the Standard Model of particle physics is
given. The various models used for deriving observable predictions from the Standard Model
are reviewed in Chapter 3, with particular emphasis on the description of jets in V +jet
production. Chapter 4 gives an overview of the Tevatron pp̄ collider and the DØ experiment.
The process of reconstructing physics objects and their energies from the signals registered
in the DØ detector is summarized in Chapter 5, with particular emphasis on electrons and
jets. A description of the analyzed data sets is given in Chapter 6. The predictions of
the sherpa and pythia event generators of jet-related observables for Z/γ∗(→ e+e−)+jet
production are compared with distributions reconstructed in DØ data in Chapter 7. To
facilitate direct comparisons between the DØ data and theory predictions, the distributions
reconstructed in data must be corrected for the impact of the detector, and various techniques
for performing these corrections are discussed in Chapter 8. One of these techniques is
applied in Chapter 9 to measure the transverse-momentum spectra of the three leading jets
in Z/γ∗(→ e+e−)+jet production, as well as the shape of the spectrum of differences in
azimuthal angle between the Z/γ∗ and any jet in the event. In Chapter 10 these measurements
are compared with the predictions of various theory calculations and commonly used event-
generator models. Detailed studies of the relative performance of the different event-generator
models are presented. Finally, in Chapter 11, similarities and differences between Z/γ∗+jet
production at the Tevatron and the LHC are discussed.
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Chapter 2

The Standard Model of Particle Physics

The Standard Model of particle physics is a theory which successfully describes the results of
all particle physics experiments to date1. It was formulated in the 1960s and 1970s, and has
predicted the existence of several new particles which have later been found in experiments,
e.g. the top quark and the W and Z bosons.

The present Chapter contains a brief summary of the Standard Model of particle physics,
and a motivation for the measurements which constitute the main part of this thesis.

2.1 Particle Content

The particles currently thought to be fundamental can be divided into two categories: matter
particles and force carriers. The matter particles can be thought of as the building blocks
of matter. The force particles mediate interactions between matter particles. The Standard
Model is a quantum field theory based on a SU(3) ⊗ SU(2) ⊗ U(1) gauge symmetry. Each
particle is fully specified by quantum numbers and its mass:

• the electric (Q) and weak (I3) charges specify interaction strength of the particle with
the force particles of the electroweak force (the photon, the Z and W±);

• similarly, the color charge defines the interaction strength of the particle with the force
particles of the strong force (gluons);

• the mass of a particle is given by its interaction with the Higgs field.

For instance, an electron is a spin-1
2 particle which has Q = −1, I3 = −1

2 , no color charge
and a mass of 511 keV.

Particles with integer (half-integer) spin are referred to as bosons (fermions). All Standard
Model force-mediating particles are spin-1 bosons, whereas the matter particles are spin-1

2
fermions. Fermions can be divided into particles with zero color charge, called leptons, and
particles with non-zero color charge, called quarks. A summary of the various fermions, their
masses and their quantum numbers is given in Tabs. 2.1 and 2.2.

2.2 Lagrangian

The Standard Model is a quantum field theory based on the principle of gauge invariance. It
is specified in terms of a Lagrangian density, LSM, which determines the equations of motion
through a minimization of the action, S =

∫

d4xLSM. The Lagrangian is required to be

1Apart from the existence of massive neutrinos.

3



Chapter 2 The Standard Model of Particle Physics

Leptons Quarks

Name Symbol Mass Name Symbol Mass

electron neutrino νe < 3 eV up u 1.5 to 3.3 MeV

muon neutrino νµ < 0.2 MeV down d 2.5 to 5.0 MeV

tau neutrino ντ < 18.2 MeV strange s 70 to 130 MeV

electron e 511.0 keV charm c 1.1 to 1.3 GeV

muon µ 105.7 MeV bottom b 4.1 to 4.4 GeV

tau τ 1.777 GeV top t 171.2 ± 2.1 GeV

Table 2.1: The Standard Model fermions and their masses (from Ref. [1]). Since quarks are
not observable as free particles their exact masses are model dependent. Conse-
quently, a mass intervale is specified, corresponding to a range of different models.
Throughout this thesis natural units are used. In this system, the reduced Planck
constant ~ and the speed of light c are ~ ≡ c ≡ 1 and energies are given in units
of electron-volt (eV).

Fermions Generation Q [e] I3 SU(3) SU(2) U(1)
(

u

d′

)

L

(

c

s′

)

L

(

t

b′

)

L

2
3

−1
3

1
2

−1
2

3 2 1
3

Quarks
uR

dR

cR

sR

tR

bR

2
3

−1
3

0

0

3

3

1

1

4
3

−2
3

(

νe

e

)

L

(

νµ

µ

)

L

(

ντ

τ

)

L

0

−1

1
2

−1
2

1 2 −1
Leptons

eR µR τR −1 0 1 1 −2

Table 2.2: An overview of the fermions of the Standard Model and their quantum num-
bers. The electroweak force distinguishes between so-called left-handed (L) and
right-handed (R) eigenstates. The quark eigenstates of the electroweak interac-
tion, denoted d′, s′, b′, are related to the mass eigenstates d, s and b via the
Cabibbo–Kobayachi–Maskawa–Matrix. Given that neutrino oscllations have been
experimentally confirmed, neutrinos are known to hane non-zero mass [2]. Conse-
quently, they also have right-handed contributions.

invariant under Lorentz transformations, so as to give a relativistic theory, and it contains
terms describing free fields as well as interactions between different fields.

The Standard Model Lagrangian can be written as

LSM = LEW + LQCD + LHiggs + LYukawa. (2.1)

The two first terms, LEW and LQCD, describe free fermions, free bosons (gauge bosons) asso-
ciated with the SU(2)×U(1) and SU(3) gauge symmetries, the interaction between fermions
and gauge bosons, and the interactions among gauge bosons themselves. The terms LHiggs
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2.2 Lagrangian

and LYukawa introduce the Higgs particle and non-zero gauge-boson and fermion masses.
In the next sections, a short review of the principle of local gauge invariance and minimal
substitution is given, followed by a discussion of each term in Eq. (2.1).

2.2.1 Local Gauge Invariance and Minimal Substitution

In the absence of interactions, massless fermions can be described by the Lagrangian

L = Ψ̄(iγµ∂µ)Ψ, (2.2)

with γµ being Dirac matrices, Ψ a fermionic field and Ψ̄ its adjoint field. The corresponding
equation of motion is the Dirac equation which describes relativistic spin-1

2 fermions. The
guiding principles for introducing additional terms in the Lagrangian to describe interactions
are those of symmetry groups and gauge invariance. These principles were known to give
the correct interaction terms for electromagnetism and have been successfully applied in
understanding the electroweak force and the strong force. The Standard Model Lagrangian
is required to be invariant under local phase or gauge transformations arising from the U(1),
SU(2) and SU(3) symmetry groups:

Ψ → Ψ′ = e−iτjωj(x)Ψ

Ψ̄ → Ψ̄′ = eiτjωj(x)Ψ̄ (2.3)

where τj is the jth generator of the group, and ωj(x) is an arbitrary real differential function.
For U(1) there is one generator, a scalar constant, whereas for SU(N), N = 2, 3, there are
N2 − 1 generators which can be represented as traceless N × N matrices. The requirement
that the Lagrangian (Eq. (2.2)) has a local gauge invariance, i.e. allowing ωj in Eq. (2.3) to
be a function of space-time, leads to the introduction of new field(s), Aµ

i , through a so-called
minimal substitution:

∂µ → Dµ = ∂µ − ig
τ i

2
Aiµ, (2.4)

where τ i are the generator(s) of the symmetry group in question, g is a coupling constant,
and Aµ

i are spin-1 gauge boson fields. The gauge transformation properties of the gauge
fields are defined to cancel the term arising from the partial derivative in Eq. (2.2) acting
on ωj(x), defined in Eq. (2.3). The substitution defined by Eq. (2.4) gives one new vector
field, with an associated vector boson, per generator of the symmetry group. The vector
field(s) per construction interact with the fermionic field of Eq. (2.2), and can be interpreted
as the messenger particle of the force arising from the gauge symmetry. For SU(2) × U(1)
the gauge fields describe the electroweak force, whereas the SU(3) gauge fields describe the
strong force.

Gauge fields enter the Lagrangian through Eqs. (2.2) and (2.4), but also through kinematic
terms describing the gauge fields in absence of interactions with fermions, of the form

− 1

4
FiµνFµν

i . (2.5)

Here Fiµν denotes the field tensor of the gauge field Aiµ(x), and it is defined as

Fiµν = (∂µAiν(x) − ∂νAiµ(x)) + gfijkAjµAkν , (2.6)
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Chapter 2 The Standard Model of Particle Physics

where g is the coupling constant introduced in Eq. (2.4) and fijk is the structure constants
which specify the group. The structure constants define the commutation relations of the
generators of the symmetry group through

[τi, τj] = ifijkτk. (2.7)

2.2.2 SU(2)L × U(1)Y Symmetry – Electroweak Unification

The SU(2)L × U(1)Y symmetry of the Standard Model gives rise to the unification of the
electromagnetic and weak forces through the Glashow-Weinberg-Salam model. The SU(2)L
symmetry distinguishes between left-handed and right-handed fermion states, defined as

ΨL = PLΨ

ΨR = PRΨ, (2.8)

where PL and PR are projection operators which satisfy PL·PR = PR ·PL = 0 and PL+PR = 1,
implying PL = P 2

L, PR = P 2
R. Left-handed fermions transform as a doublet under SU(2)L, i.e.

have weak isospin I3 = ±1
2 , whereas right-handed fermions are singlets, i.e. have2 I3 = 0. The

gauge bosons of the SU(2)L group couple only to left-handed fermions, and the Lagrangian
has the form

LEW = iL̄γµDµL + iR̄γµDµR − 1

4
BµνB

µν ,−1

4
W i

µνW
µν
i , (2.9)

where L denotes left-handed fermion doublets and R the corresponding right-handed singlets
(see Tab. 2.2). The SU(2)L × U(1)Y covariant derivative is given in analogy with Eq. (2.4)
as

Dµ = ∂µ + ig1
Y

2
Bµ + ig2τiW

i
µ, (2.10)

with Bµ being the U(1)Y gauge field, g1 the U(1)Y coupling constant and Y the U(1)Y group
generator. Similarly, for SU(2)L, W i

µ (i = 1, 2, 3) denotes the gauge fields, g2 the coupling
constant, and τi the three generators of the symmetry group. The boson field tensors, Bµν

and W i
µν , are defined by Eq. (2.6). The U(1)Y structure constants are zero, corresponding

to a commuting gauge field. The electroweak Lagrangian, LEW, contains terms which are
at most bi-linear in Bµ, meaning that the U(1)Y gauge field couples to fermions, but not
to itself. For SU(2)L, the structure constants are given as the completely anti-symmetric
tensor, ǫijk. The non-zero structure constants yield non-commutative gauge (Eq. (2.7)) fields
and tri-linear and quartic gauge terms (Eqs. (2.5) and (2.6)) in LEW, corresponding to gauge
bosons which couple to themselves. Two of the SU(2)L gauge fields can be combined linearly
into to the physical, charged fields

W±
µ =

1√
2
[W 1

µ ∓ iW 2
µ ] (2.11)

whose quanta are observed as W± bosons. The remaining neutral SU(2)L field mixes with
the U(1)Y field through the weak mixing angle, θW , giving the fields Aµ and Zµ, defined as

Aµ = Bµ cos θW + W 3
µ sin θW ,

Zµ = −Bµ sin θW + W 3
µ cos θW . (2.12)

2The analogy for electromagnetism would be that left-handed fermions have a non-zero electric charge,
whereas right-handed fermions are charge neutral.
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The weak mixing angle is defined by requiring the quanta of the Aµ field to correspond to
photons. This is fulfilled by the choice g1 sin θW = g2 cos θW = e, with e the absolute value of
the electric charge of an electron. The quanta of the Zµ field are observed as the Z boson. The
charge corresponding to the U(1)Y symmetry is called hyper-charge, Y , whereas for SU(2)L
it is referred to as weak isospin, I3. These charges are related to the electrical charge, Q,
through

Q =
1

2
Y + I3.

2.2.3 SU(3) symmetry – QCD

The SU(3) symmetry of the Standard Model describes the strong force between quarks. The
theory of SU(3) is referred to as QCD, and its Lagrangian is given as

LQCD = iq̄fγµDµqf − 1

4
Gi

µνGµν
i , (2.13)

with qf being a color triplet of quarks of flavor f . The covariant derivative, Dµ is given by

Dµ = ∂µ − ig3
λi

2
Gi

µ. (2.14)

Here, λi (i = 1...8) are the eight SU(3) generators and Gi
µ the corresponding gauge fields,

with g3 being the coupling constant. The quanta of the SU(3) fields are called gluons.
The SU(3) generators commutate according to Eq. (2.6) with the structure constants given

by the completely anti-symmetric fijk, with the non-zero components being defined through

f123 = 1,

f147 = f246 = f257 = f345 = f516 = f637 =
1

2
,

f458 = f678 =

√
3

2
. (2.15)

As for SU(2)L, the non-zero structure constants of SU(3) give rise to tri-linear and quartic
terms in LQCD. This corresponds to gluons carrying a non-zero color charge. Since the SU(3)
color symmetry is unbroken gluons have zero mass.

2.2.4 Higgs Sector

Introducing mass terms as m2Ψ̄Ψ, where Ψ denotes any Standard Model field, would break
the SU(2)L invariance of the Standard Model. This follows since Ψ̄Ψ = Ψ̄(PL + PR)Ψ =
Ψ̄(P 2

L + P 2
R)Ψ = Ψ̄RΨL + Ψ̄LΨR, and since left-handed and right-handed fields transform

differently under the SU(2)L gauge transformation defined by Eq. (2.3):

ΨL → Ψ
′

L = eiτjωj(x)Ψ

ΨR → Ψ
′

R = ΨR. (2.16)

Consequently, the term m2Ψ̄Ψ is not gauge invariant and cannot be included in the La-
grangian. Instead, mass terms are accommodated into the Standard Model by postulating
the existence of a scalar bosonic field with a non-zero vacuum expectation value, referred
to as the Higgs field. Unlike for the force-mediating fields introduced above, there is no

7
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V
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h

υ−υ

(φ)

Figure 2.1: The Standard Model Higgs potential for a complex field Φ.

gauge mechanism responsible for the Higgs field. The Higgs field is a scalar, complex SU(2)L
doublet

Φ =

(

φ+

φ0

)

(2.17)

described by the Lagrangian

LHiggs = |DµΦ|2 − V (Φ), V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, (2.18)

with λ > 0 for the scalar potential V (Φ) to be bounded from below. The covariant derivative
of SU(2)L × U(1)Y , Dµ, defined in Eq. (2.10), introduces coupling terms between the Higgs
field and the gauge bosons. For µ2 < 0, the ground state, Φ0, can be written as

Φ0 =
1√
2

(

0

v

)

, v =

√

−µ2

λ
, (2.19)

corresponding to a non-vanishing vacuum expectation value

〈

0|Φ2|0
〉

=
v2

2
. (2.20)

Whereas the Lagrangian is SU(2)L × U(1)Y symmetric, the ground state is not – this is
referred to as spontaneous symmetry breaking The field Φ can be expanded around the ground
state as

Φ =
1√
2

(

η1 + iη2

v + h + iη3

)

=
1√
2

(

0

v + h

)

. (2.21)

The last equality follows from transforming from an arbitrary to the unitary gauge. The
quanta of the h field are called Higgs bosons. In the unitary gauge the three ηi fields appear
as longitudinal degrees of freedom for the Z and W± gauge bosons. The three gauge bosons
thus acquire masses, given as

mW =
1

2
vg2, mZ =

mW

cos θW
, (2.22)
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2.3 From Lagrangian to Collision Rates

In contrast, the quanta of the Aµ field, defined in Eq. (2.12), remain massless. The masses
mW and mZ can be expressed in terms of well-measured experimental quantities, i.e. the
gauge boson masses are predictions of the Standard Model, and these predictions are found
to be in good agreement with current experimental data.

The Higgs boson also acquires a mass through its self-coupling terms, given as

mH =
√

−2µ2. (2.23)

Unlike mW and mZ , mH is not predicted by the Standard Model since µ is essentially a free
parameter, only required to satisfy µ2 < 0.

The masses of the Standard Model fermions can be described by introducing terms in the
Lagrangian which couple the fermion fields to the Higgs field (so-called Yukawa terms). For
example, the Yukawa terms for electrons are

ge

(

L̄ΦeR + Φ†ēRL
)

(2.24)

where L denotes the first-generation left-handed lepton doublet and eR the right-handed
electron siglet (see Tab. 2.2). In the unitarity gauge this can be written as

gev√
2
ēe +

ge√
2
ēeh. (2.25)

The first term is the electron mass term, and the second term specifies the coupling of the
electron to the Higgs boson. The electron mass is

me = gev/
√

2, (2.26)

with the electron coupling to the Higgs boson being

me/v. (2.27)

Similar Yukawa terms are introduced for the other charged leptons and for the quarks. Anal-
ogous to Eq. (2.27), the couplings of the Higgs boson to fermions are always proportional to
the fermion mass.

2.3 From Lagrangian to Collision Rates

The Standard Model not only predicts which particles exists, but also how often each particle
type will be produced in a given experimental collider setup, e.g. the Tevatron or the LHC.

By convention, the description of production rates is based on a purely classical analogy:
throw point-like objects (probes) towards a collection of n1 non-overlapping circles (targets),
each with an area σ, which are contained inside a larger circle (pad), with area Aeff . Each
probe is guaranteed to hit inside the pad, and the probability that it hits a target is given by

Phit =
n1 · σ
Aeff

. (2.28)

Assuming that n2 independent probes are thrown towards the pad with a frequency, f , the
expected hit rate per second, Ṅ , is given by

Ṅ = f · n1 · n2

Aeff
· σ. (2.29)

This picture is also used for collider experiments where bunches of particles with an effective
area of Aeff containing n1 and n2 particles intersect with a frequency of f . The production
rate of a process, e.g. pp̄ → Z/γ∗ → ee + X, is given by the cross section of the process, σ,
corresponding to the area of each target in the classical picture above.

9



Chapter 2 The Standard Model of Particle Physics

2.3.1 Calculating Cross Sections

The cross section for a transition from two incoming particles into N outgoing particles can
be expressed as

σ2→N =

∫

|M|2 × Pkinematics (2.30)

where |M|2 is the squared matrix element and Pkinematics is a phase-space factor. The squared
matrix element can be determined from the Lagrangian using perturbation theory and the
phase-space factor is given by the kinematic properties of the initial-state and final-state
particles. The matrix element, M, is normally written in terms of a perturbation series
expansion in the coupling constant of the interaction. Following Feynman, each term in
the series can be determined from graphical interaction diagrams, Feynman diagrams, using
translation rules, Feynman rules, which are given by the Lagrangian. Including only terms to
the lowest order in the coupling constant gives a leading order (LO) computation. Including
one order more in the coupling constant gives a next-to-leading order (NLO) computation,
and so on.

Cross sections, which have the dimensions of area, are normally quoted in units of barn
(b), defined by

1 b ≡ 10−24 cm2. (2.31)

As an example, the cross section for pp̄ → Z/γ∗ → ee+X at the Tevatron collider (described
in Chapt. 4), for 60 < MZ/γ∗ < 130 GeV, is ≈ 250 pico-barn (pb). To appreciate how unlikely
it is that this process takes place, it is useful to consider the classical analogy of a target area:
assuming that the radius of a proton is 10−15 m, the “target area” of pp̄ → Z/γ∗ → ee + X
interaction is ≈ 1012 times smaller than the area of a proton. Or, if one would collide a single
pp̄ pair head on once per second3, the average interaction rate would be one per 30k years.

2.3.2 Luminosity

The factorization of the production rate into a theory-dependent interaction part and a
beam-parameter dependent part is formalised through

R = L · σ, (2.32)

with the instantaneous luminosity of the collider, L, being defined as

L = f · n1 · n2

Aeff
. (2.33)

Instantaneous luminosity is measured in units of [length]−2·[time]−1, normally in units of
cm−2 s−1. The effective area of each bunch is expressed in terms of the horizontal (σx) and
the vertical (σy) bunch width under the assumption of a perfectly Gaussian bunch profile.

Whereas the instantaneous luminosity is a parameter of the experimental setup, the size
of a data set is characterised by the integrated luminosity,

L =

∫

Ldt, (2.34)

3Assuming n1 = n2 = 1, Aeff = Aproton = 10−30 m2 and f = 1 Hz in Eq. (2.29).
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f
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gluon

Figure 2.2: Leading-order diagrams for fermion+fermion→fermion+fermion mediated by a
Z/γ∗ propagator (left) and a gluon propagator (right).

Figure 2.3: Fermion-loop diagrams contributing to the Z/γ∗ propagator (left). Both fermion-
and boson-loop diagrams contribute to the gluon propagator (center and right).

where the integral is performed over the time period when the data set was registered (data-
taking period). A process with cross section σ is expected to have happened

N = L · σ (2.35)

times during the data-taking period.

2.4 Renormalization and Running Coupling Constants

The coupling constants appearing in the Standard Model Lagrangian are dimensionless, real,
positive numbers. When computing cross sections, the inclusion of terms beyond leading
order in the coupling constant leads to divergences which can be treated using the technique
of renormalization. To illustrate such divergences, we consider the transition from two in-
coming fermions into two outgoing fermions via the interaction of a gauge boson. Leading
order interaction terms correspond to Feynman diagrams with the exchange of a single gauge
boson (see Fig. 2.2). Higher-order terms recive contributions from Feynman diagrams with
additional outgoing particles (real corrections), or with so-called loops (virtual corrections).
A loop can contain all particle-antiparticle pairs which carry the charge to which the gauge
boson couples. Examples of loop diagrams are given in Fig. 2.3 for the case of a Z/γ∗ and
a gluon mediated interaction. Only the momentum sum of the two loop particles is physi-
cally observable, not the momenta of each loop particle itself, and as a results the transition
probability computation includes an integral over all possible loop particle momenta, and
these integrals lead to a divergent result. Through renormalization, such divergences are
avoided defining physical quantities, e.g. masses or coupling constants, as the combination of
the bare quantity appearing in LSM and the divergent loop contribution. For renormalizable
theories, like the Standard Model, the unobservable value of the bare quantity can be chosen
such that loop divergences to all orders in perturbation theory are cancelled. As a conse-
quence of renormalization, the value of the coupling constants depend on the energy-scale
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Chapter 2 The Standard Model of Particle Physics

(the renormalization scale, µR) which defines which higher-order contributions are absorbed
into the redefinition of the quantities of the Lagrangian, and which are taken into account
using perturbation theory. The renormalized coupling constants, referred to as the running
coupling constants, obey the so-called renormalization group equation

Q2 ∂α

∂Q2
= β(α), (2.36)

where the β-function can be expressed as a power-series in α using perturbation theory.
Including only LO terms in α, i.e. assuming

β(α) = −β0α
2, (2.37)

and solving Eq. (2.36) for α gives

α(Q2) =
α(µ2)

1 + β0α(µ2) log Q2

µ2

, (2.38)

where the constant β0 depends on the particles which can appear in the loops. For two
electrically charged low-energetic particles interacting via a photon exchange, the regime of
quantum electrodynamics, all electrically charged fermions can appear in the loops, yielding

βQED
0 = − 1

3π
< 0, (2.39)

meaning that the coupling constant of QED increases with increasing momentum trans-
fer. For two quarks interacting via gluon exchange the situation is different. As noted in
Sect. 2.2.3, the non-zero structure constants of the SU(3) group give non-commuting gauge
fields and tri-linear and quartic gluon self-coupling terms. As a consequence, the loops along
the gluon line can contain both quarks and gluons, giving

βQCD
0 =

11 · CA − 2nf

12π
, (2.40)

where the term 11 · CA arises from gluon loops, and CA = 3 is given by the structure of the
SU(3) symmetry group. In contrast, the term 2nf arises from fermion loops, and its value
depends on the number of color-charged fermions, nf , which have a mass smaler than Q2

(the number of so-called active flavours). In the Standard Model nf ≤ 6, giving

βQCD
0 ≥ 7

4π
> 0, (2.41)

which, inserted into Eq. (2.38), implies that the coupling constant of QCD, αs, decreases
asymptotically towards zero for Q2 → ∞. In other words, quarks behave as free particles at
high energies, a property which is known as asymptotic freedom. The coupling constant of
QCD becomes large for small momentum transfers and diverges at a scale of approximately
200 MeV. Phenomena mediated by QCD at momentum transfer scales below about 1 GeV,
like the structure of hadrons, can only be described using either phenomenological models
(see Chapter 3) or using so-called lattice QCD calculations in which divergences are avoided
through the quantization of space-time [3]. The non-observation of low-energetic, free, color-
charged particles in experiments leads to the assumption that such particles cannot be isolated
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Figure 2.4: The running of αs as predicted by perturbative QCD calculations is in good agree-
ment with experimental measurements covering a range of momentum transfer
scale values of about two orders of magnitude (from Ref. [4]).

singularly, a principle referred to as confinement. Comparisons between the running of αs and
experimental measurements at many different energy scales have shown excellent agreement,
see Fig. 2.4.

Ten different measurements which are experimentally and theoretically well understood
have been evolved from their respective scales to one common scale, taken to be MZ , and
combined to give the current world average of

αs(MZ) = 0.1189 ± 0.0010, (2.42)

with a χ2 per degree of freedom of 9.9/9 [4].

When computing a cross section the scale at which the running coupling constant is to
be evaluated, µR, is not uniquely defined. In principle any positive value can be chosen. In
general, a good choice of µR is one that minimises the size of higher-order corrections, and
frequently a scale characteristic of the hard scattering is used. The uncertainty of a compu-
tation due to the non-unique choice of µR is called the renormalization scale uncertainty, and
by convention it is evaluated as the effect of scaling µR up and down by a factor of two. The
renormalization scale uncertainty is not a Gaussian uncertainty, and it can be interpreted
as a measure of the relative predictive power of different theory predictions. In general, the
more orders in the perturbation series which are included in a calculation, the lower is the
dependency of the calculation on the choice of renormalization scale. For the exact, all-order
solution the dependency vanishes.
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Figure 2.5: Tevatron limits on the Standard Model Higgs production cross section scaled to
the Standard Model prediction [6].

The large value of αs compared with αQED (≈ 1/137) means that perturbation series for
the matrix elements for QCD processes in general converge more slowly than those for QED
processes, making the inclusion of higher-order terms important for producing accurate the-
oretical predictions. An additional complication when computing QCD cross sections arises
from the property of confinement: the observable particles resulting from a QCD interaction
are not identical with the particles appearing in the Lagrangian. Phenomenologically moti-
vated models whose parameters are tuned to a large range of experimental measurements are
needed to connect incoming and outgoing QCD partons with observable hadrons. How these
complications are treated in the calculation of QCD cross sections is described in Chapter 3.

2.5 Detecting the Higgs boson

The Higgs boson is the only Standard Model model particle whose existence has not been
confirmed experimentally. Detecting the Higgs boson is one of the main goals of the particle
physics community. The mass of the Higgs boson (mH) is not predicted by the Standard
Model, but several experimental and theoretical constraints exist. Unitarity arguments from
WW scattering allow an upper limit of ∼ 1 TeV to be deduced. A lower limit of 114.4
GeV at a confindence level (C.L.) of 95% arise from direct Higgs boson searches at the Large
Electron-Positron Collider (LEP) [5]. As shown in Fig. 2.5, searches at the Fermilab Tevatron
Collider have excluded a Standard Model Higgs boson with mH in the range 160−170 GeV at
95% C.L. Fits of Standard Model parameters to electroweak precisions measurements [7] are
sensitive to the the value mH via virtual corrections, allowing for the extraction of indirect
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Figure 2.6: ∆χ2 versus mH arising from a fit to electroweak precision measurements (left),
and from a fit to electroweak precision measurements combined with direct
searches (right) [7].

information on the Higgs boson mass. Current fits to electroweak precisions measurements
yield mH = 83+30

−23 GeV, as shown in Fig. 2.6 (left). Including direct searches from LEP and

Tevatron give mH = 116.4+18.3
−1.3 GeV, see Fig. 2.6 (right). The 2σ and 3σ intervals for mH

are [114, 150] GeV and [[113, 163] ∪ [182, 226]] GeV, respectively (including theory errors).
The Standard Model Higgs boson couples to fermions proportionally to mf/2mW and to
gauge bosons proportionally to the gauge boson mass. The largest contribution to the Higgs
cross section comes from gluon fusion via a top-quark loop, followed by the vector-boson
fusion channel. The Standard Model Higgs boson preferentially decays into WW or ZZ
pairs for the mH range where this is kinematically allowed, see Fig. 2.7. Below ∼ 150 GeV
decays into bb̄ dominate, with small but important contributions coming from ττ and γγ.
Studies of the Standard Model Higgs boson discovery potential for the LHC experiments have
identified H → γγ via gluon fusion and Hqq̄ → ττqq̄ via vector-boson fusion as the most
promising discovery channels for the low Higgs mass region favored by electroweak precision
measurements [8]. Recent studies [9] introduce the associated production of W or Z with a
high-pT H(→ bb̄) as a potentially important discovery channel in case of a Higgs mass below
∼ 130 GeV. For a Higgs mass above ∼ 140 GeV, H → WW and H → ZZ show the largest
discovery potentials.

2.6 Problems of the Standard Model

The Standard Model has enjoyed an unprecedented level of success since it was introduced
during the 1970s. It is in agreement with all existing particle-physics measurements4, and it
has allowed for several new predictions which have been confirmed by experiments. The only
Standard Model particle not detected experimentally so far is the Higgs boson.

In spite of its successes, there are many conceptual problems to which the Standard Model
offers no answer. Some of these problems are summarized in the following list:

• Why are particles separated into fermions and bosons?

4The only exception being neutrino-oscillation measurements which imply non-zero neutrino masses and
therefore the existence of right-handed neutrinos.
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Figure 2.7: The branching ratios of the Standard Model Higgs boson [10].

• Why are fermions separated into leptons and quarks?

• Why are there exactly three different fermion generations?

• Why do the observed fermion masses span over more than ten orders of magnitude,
from neutrinos with masses below ∼ 3 eV to the top quark with a mass of around 170
GeV?

• The Standard Model allows for a term in LQCD which is CP violating and proportional
to the so-called Θ parameter. Measurements of the neutron electric dipole moment
leads to the limit Θ < 10−9 [11]. The Standard Model model offers no explanation for
why Θ is so close to zero.

• Why is gravity so much weaker than the Standard Model forces?

• All attempts to formulate a quantized description of lead to non-renormalizable theories.
The Standard Model ignores all contributions from gravitation. This is acceptable
at low energies due to the relative weakness of gravity, but not at the Planck scale
(MP = 1.2 × 1019 GeV) where gravitation is expected to become strong.

• The running coupling constants of the Standard Model lead to the coupling constants
of the U(1)Y , SU(2)L and SU(3) gauge interactions to become almost equal at around
1013 GeV (see Fig. 2.8, left). The Standard Model fails to offer an explanation for this
“almost-unification” of the three forces at high scales.

• In analogy with the running of the coupling constants (see Sect. 2.4), an observable
particle mass is a function of a bare mass and higher-order loop contributions. Assuming
the Standard Model to be valid up to the Planck scale the quadratically divergent loop
contributions to mH are of the order of M2

P . For the observable Higgs mass to be of
O(100 GeV), as indicated by electroweak precision measurements, the bare quadratic
Higgs mass must be fine-tuned to an accuracy of 10−34. The large size of the Planck
scale compared to the electroweak scale of ∼ 100 GeV is referred to as the hierarchy
problem of the Standard Model.
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Figure 2.8: Running coupling couplings in the SM (left) and in a MSSM scenario (right).

• Cosmic microwave background measurements and other astroparticle-physics measure-
ments have shown that Standard Model particles make up only about 5% of the uni-
verse [12]. Dark matter, not part of the Standard Model, make up about 23% of the
universe. The remaining 72% is assigned to dark energy which is also not described by
the Standard Model.

2.7 Extensions to the Standard Model

Many different extensions to the Standard Model have been suggested to overcome one or
more of the problems listed above. Common to these beyond-the-Standard-Model (BSM)
models is the predicted existence of new particles. Apart from completing the experimental
verification of the Standard Model by detecting the Higgs boson, the main goal of present
and future particle-physics experiments is the discovery of such BSM particles.

The most promising extensions to the SM are probably supersymmetric (SUSY) mod-
els which expand the gauge symmetries of the Standard Model with a symmetry between
fermions and bosons, leading to each SM fermion (boson) having a boson (fermion) SUSY
partner. The non-observation of SUSY partners with masses equal to the Standard Model
particles implies that supersymmetry, if realized in nature, has to be broken. Supersymme-
try provides solutions to several of the problems of the Standard Model. The introduction
of supersymmetry removes the fundamental distinction between fermions and bosons. In
case the so-called R-parity quantum number is conserved, SUSY also predicts the existence
of a stable, lightest SUSY particle which is a candidate for dark matter (see for instance
Ref. [13]). The apperance of SUSY particles in loop corrections to Standard Model quanti-
ties removes the quadratic divergence of the Standard Model Higgs mass, and also replaces
the almost-unification of the Standard Model coupling constantes at high energies with a
proper unification. No SUSY particle has been detected experimentally so far in spite of
many searches being performed in a long list of experiments. Searches for SUSY particles
has a high priority at the upcoming LHC experiments.

Motivated by the non-observation of SUSY particles, alternative explanations for the can-
cellation of the quadraticly divergent corrections to the Higgs mass have been proposed. So-
called Little Higgs models [14] cancel divergent contributions from Standard Model fermions
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(bosons) using new fermions (bosons). Whereas SUSY solves the divergence problem through
exact cancellations, little-Higgs models only postpones the problem, requiring additional BSM
physics, e.g. SUSY, to appear at a higher energy scale. Another strategy for solving the hier-
archy is the introduction of large extra dimensions through for example the ADD model [15].
Only gravity is allowed to propagate into the extra dimensions, resulting in a dilution of
the strength of gravity compared with the Standard Model forces. This corresponds to a
small value of the Planck mass (∼ 1 TeV is possible), thereby controlling the quadratic
contributions of the Higgs mass.

The Standard Model model can also be extended by unifying the SU(3) and SU(2) ×
U(1) symmetries into a larger gauge group. Such grand-unified theories (GUT) predict the
existence of particles which carry both non-zero color and a non-zero lepton number, referred
to as leptoquarks. Another prediction of GUTs is the existance of gauge bosons similar to
the Standard Model ones, but with a higher mass. A generic high-mass version of the Z
boson is referred to as Z ′.

The non-observation of CP violation in the QCD sector has lead to the proposal of a new
symmetry which forbids a CP violating term from appearing in LQCD, leading to a new
particle, the axion [16]. Axions are searched for in experients like CAST [17], exploiting the
fact that axions can be converted into photons in the presence of a strong magnetic field.
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Chapter 3

Phenomenology of pp̄ Collisions

This Chapter gives an overview of various techniques and models commonly applied for
deriving observable predictions from the Lagrangian of the Standard Model. The production
of Z/γ∗ in pp̄ collisions is used as an example, but most statements are also valid in the
context of any Standard Model process.

Using perturbation theory, transition probabilities can be expressed in terms of a power-
series expansion in the coupling constants of the forces involved in the interaction. The initial
and final-state particles are quanta of the fields appearing in the Lagrangian. For example,
the cross section for qq̄ → e+e−, including higher-order terms only1 in αs, can be written as

σ = α2
EW

∞
∑

i=0

αi
sAi, (3.1)

where the coefficients Ai are functions of the four-momentum vectors of the initial and final-
state particles. The term corresponding to i = 0 is referred to as the leading-order (LO) term,
the i = 1 term as the next-to-leading-order (NLO) term, or in general, the i = m term is the
NmLO term. Higher-order terms can be grouped into two categories: real-emission terms,
corresponding to Feynman diagrams with an additional final-state particle compared with the
LO diagrams, and virtual-correction terms, arising from the interference between diagrams
containing an internal loop and LO diagrams (see Fig. 3.1). With current techniques it is
not possible to take all terms in Eq. (3.1) into account. Instead, one has to identify and take
into account the most important terms, ignoring all other terms. As illustrated below, the
relative importance of terms depends on the observable. A simplified overview which terms
are taken into account in the various models described in this Chapter is given in Tab. 3.1 at
the end of the Chapter.

1Motivated by higher-order terms in αs being more important than those in αEW for the study presented in
this thesis.
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Figure 3.1: Feynman diagrams for qq̄ → e+e− production: LO (left), real-emission NLO
(center) and virtual-correction NLO (right).
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3.1 Fixed-Order Calculations

Assuming that αs << 1, and that the coefficients Ai do not play a deciding role in the ordering
of the terms in Eq. (3.1) – referred to as the fixed-order assumption below – the term αi

sAi is
significantly smaller than αi−1

s Ai−1. In this case a good approximation to the cross section
is found by including only the n first terms, where n is as large as technically possible.
The resulting calculation is referred to as a fixed-order calculation. Real-emission terms are
divergent in the limit where a parton is soft or collinear with respect to another parton. These
divergences cancel against opposite-sign divergences in virtual-correction terms, yielding a
finite, physical result if all terms to a fixed order are taken into account [18].

Current state-of-the-art fixed-order calculations for 2 partons → Z include NNLO order
QCD terms [19]. For qq̄ → Z + N partons, calculations with NLO QCD terms exist for
N = 1, 2 [20]. Calculations for W + 3 partons production which includes the most important
terms at NLO (leading-color approximation) have recently been presented [21, 22, 23], and
the corresponding calculation for Z + 3 partons is expected to follow soon. If one ignores
virtual corrections, the calculation for qq̄ → Z/γ∗ → e+e− + N partons is automatised for all
N [24, 25], but computer power constraints currently limit N to ∼ 6 [25].

3.2 Including Terms to all Orders

If a final-state parton is soft or collinear with respect to another parton, the so-called
soft/collinear limit, a fixed-order calculation does not include all large terms. In general,
the coefficients Ai can be written as

Ai =

2i
∑

k=0

BijL
j. (3.2)

The function L becomes large in the soft/collinear limit due to logarithmic factors like

log
Q2

q2
, (3.3)

with Q2 being a high momentum scale characteristic for the interaction, e.g. MZ for Z-
production, and q2 being the transverse momentum of one parton with respect to another.
For q2 → 0, L becomes large and Ai is said to be logarithmically enhanced. For such soft
and/or collinear final-state constellations, the surpression of higher order terms due the cou-
pling constants is counter-acted by large logarithmic factors. As a result, higher-order terms
might be larger than lower-order terms, and the fixed-order approach breaks down. An ex-

ample where logarithmically enhanced terms are important is the low-pT region of the p
Z/γ∗

T

distribution in pp̄ → Z/γ∗ → e+e− production. As seen in Fig. 3.2, fixed-order calculations
at NLO and NNLO are unable to describe data below ∼ 5 GeV.

3.2.1 Analytical Resummation

The break-down of the fixed-order approximation in the soft/collinear limit does not reflect
a fundamental problem with the perturbative approach, only that one has failed to account
for the most important terms in the perturbative expansion. The solution is to re-order the

20



3.2 Including Terms to all Orders

Figure 3.2: Comparisons between measurements of pZ
T in pp̄ → Z/γ∗ → e+e− from the CDF

and DØ experiments and fixed-order calculations including terms of order up to
α1

s , labelled LO, and up to α2
s , labelled NLO [26]. Each prediction is shown for a

scale choice of M2
Z , as well as for 0.5 · M2

Z and 2 · M2
Z .

terms in Eq. (3.1) from being a power-series in the coupling constants, to being a power-
series in the coupling constants times a logarithm, L. Terms proportional to αi

sL
2i are said

to be the leading log (LL) terms, and αi
sL

2i−1 the next-to-leading log (NLL) terms and so
on. A calculation which takes all LL terms into account is referred to as a LL resummation
calculation. Analytical resummation is based on identifying patterns in the coefficients Bij

in Eq. (3.2) which allows the use of relations like
∑∞

i=0(x
i/n!) = ex to account for the most

important logarithmically enhanced terms to all orders in αs. Analytical resummation of

p
Z/γ∗

T in pp̄ → Z/γ∗ → e+e− production are able to describe the low-pT region where the
fixed-order calculation breaks down. The assumption of a resummation calculation, that L
is large, is not true for final-states with hard, well-separated partons, corresponding to large
values of pZ

T . A disadvantage of analytical resummation is that the technical details of the
calculation depend on the observable, not just on the process.

3.2.2 Parton Shower

Parton-shower algorithms represent an alternative approach to analytical resummation for
including logarithmic terms to all orders in the coupling constants. The starting point of a
parton-shower algorithm is a set of n final-state partons (matrix-element partons) generated
according to a 2 → n matrix-element calculation. As for resummation, the leading logarithmic
terms correspond to diagrams which contain additional partons which are soft and/or collinear
to one of the matrix-element partons. In a full matrix-element calculation the evaluation of
|M|2 = |M1 + M2 + · · ·|2 includes interference terms, e.g. M1 · M̄2, corresponding to the
interference between an additional parton being emitted off two different matrix-element
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partons, each possibility being described by a different matrix-element term, M1 and M2.
Parton-shower algorithms are based on the observation that the contributions of interference
terms vanish in the soft/collinear limit, meaning that |M|2 ≈ |M1|2 + |M2|2 + · · · . In
this limit one can adopt the picture where a parton is emitted from another parton in a
1 → 2 splitting. The functions which describe the probabilities and kinematics of such
1 → 2 splittings are referred to as Altarelli-Parisi splitting functions [27]. A parton-shower
algorithm generates emissions which are ordered from large to small values of an evolution
variable which can for instance be the virtuality of the incoming parton (Q2 ordering), the
relative transverse momentum of the two partons (pT ordering), or the angle between the two
partons (angular ordering). The parton-shower algorithm starts from a maximal value of the
evolution variable, the starting scale, and terminates at a minimal value, the cut-off scale.
The interval between the starting and cut-off scales is divided into many small intervals, and
the probability that no emission takes place in each interval is given by so-called Sudakov
factors [28]. Based on a random-number generator, decisions are taken on whether or not
an emission takes place in each interval, and, if it does, on the resulting kinematics of the
1 → 2 splitting. The value of the starting scale is not uniquely defined, and which value to
use is normally guided by assuming that it should be a scale which is characteristic for the
process. As an example, for Q2-ordered showers the scale of the hard scattering is typically
used, meaning M2

Z for qq̄ → Z/γ∗ → e+e− production. The lower cut-off scale must be
set to a value large enough that QCD is still perturbative, and it is typically defined by
the scale at which the model which translates partons into hadrons (hadronization model,
see below) was tuned, typically 1 − 2 GeV. The splitting probability depends on αs and the
renormalization scale at which its numerical value is evaluated. Theoretical arguments favour
a scale proportional to the relative pT of the splitting [29]. Starting from a core 2 → n process
described by a matrix-element calculation, one distinguishes between an initial-state parton-
shower algorithm which is applied to the two incoming partons, and a final-state algorithm
which is applied to outgoing partons. Whereas final-state algorithms trace partons forwards
in time, initial-state algorithms go backwards in time from the hard scattering, taking into
account additional constraints arising from the fact that the two initial partons are parts of
protons/antiprotons [30].

Parton-shower algorithms are closely related to analytical resummation in the sense that
both aim to include the most important logarithmic terms to all orders in αs. Whereas resum-
mation gives a transparent mathematical calculation in the sense that it is clear which terms
in the perturbative power-series expansion are accounted for, it is less obvious which terms
are actually included by a parton-shower algorithm. Currently available algorithms include
all leading-log terms. Four-momentum conservation, which is violated in a LL calculation,
is restored through a separate step after the parton shower has terminated by modifying the
kinematics of the final-state partons. One advantage of parton-shower algorithms is that
they produce fully exclusive and differential predictions2. In addition, using a parton-shower
algorithm allows for predictions about stable, observable particles instead of about partons
through the use of a hadronization model. Particle-level predictions are needed to perform a
simulation of the performance of the experimental detector setup. Such detector simulations
are essential to achieve a correct interpretation of experimental data, see Chapt. 4.

While the parton-shower approach is only theoretically justified in the soft/collinear limit, it

2In the sense that, whereas a resummed calculation will typically predict one single distribution, like pZ
T in

qq̄ → Z/γ∗ → e+e−, a parton-shower approach will allow for the generation of the full structure of single
events, allowing for the study of all kinematic properties of the event, like pZ

T , pjet
T , ∆φ(Z,jet) and so on.
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is frequently used to also generate hard, well-separated partons, motivated by the assumption
that it is better to have some emissions in this region than none at all: if one has some
emissions one can reweight the events to correct the theoretically spurious parton-shower
predictions to reproduce either more well-founded theory predictions, or experimental data.

3.3 Combining Fixed-Order and All-Order Calculations

So far we have considered calculations which include either all terms to a certain order in
the coupling constant or calculations which include the leading logarithmic terms for each
order in the coupling constant. Since fixed-order and all-order methods are complementary
by construction, an improved prediction can be achieved by combining the two.

3.3.1 Combining Fixed-Order and Analytical Resummation Calculations

As seen in Fig. 3.2 for pZ
T in qq̄ → Z/γ∗ → e+e− events, a fixed-order calculation includes the

most relevant terms at high pZ
T , but diverges at low pZ

T . In contrast, a resummed calculation
describes data at low pZ

T , but not at high pZ
T . There is an overlap between the terms accounted

for by the two methods, e.g. both NLO and NLL include the same logarithmic order terms
for order αs. When constructing a combined prediction, all terms taken into account by
both methods must be explicitly subtracted once to avoid the problem referred to as double
counting. To identify such subtraction terms, the resummed calculation must be expanded
in terms of αs and compared with the fixed-order calculation. The combined calculation
includes all terms to a certain order in the coupling constant, as well as logarithmic terms to
all orders in αs. Figure 3.3 shows a comparison between experimental data and a calculation
combining NLO3 and NLL terms for pZ

T in pp̄ → Z/γ∗ → e+e− events.

3.3.2 Combining Fixed-Order Calculations and Parton-Shower Algorithms

As mentioned in Sect. 3.2.2, it is less clear which terms are actually taken into account by a
parton-shower algorithm than in a resummed calculation. Consequently, the identification of
subtraction terms to avoid including a term twice (double counting) is more complicated when
combining a fixed-order calculation with a parton-shower algorithm than with an analytical
resummation calculation. In the case of an electroweak core process like qq̄ → Z being
combined with a QCD parton-shower algorithm, double-counting is avoided trivially – it
only becomes an issue if one or more QCD vertices are present in the Feynman diagrams
included in the matrix-element calculation, e.g. for qq̄ → Zg.

The first step towards combining parton-shower algorithms with matrix-element calcula-
tions for the associated production of a gauge boson with one or more jets was algorithms
which reweight the leading initial-state parton-shower emission to reproduce the pT spec-
trum predicted by a LO Z+parton fixed-order calculation [31, 32, 33]. This can be achieved
by increasing the starting-scale of the parton-shower algorithm until it generates more well-
separated partons with large values of pT than predicted by the fixed-order calculation. Then,
each leading parton-shower emission is kept or rejected based on a weight defined by the ra-
tio of the pT spectrum of the leading parton predicted by the fixed-order calculation to that

3I.e. including terms of order up to α1
s . In the present text this is referred to as NLO, whereas in Ref. [26]

the term LO is used since this is the first order in perturbation theory where the Z boson has a non-zero
pT .
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Figure 3.3: Same data-points as in Fig. 3.2, compared with a calculation combining NLL
resummation with all terms to order up α1

s (labeled NLL+LO), for various choices
of the resummation scale, Q, which is a parameter of the resummed calculation,
in analogy with the factorization scale [26].

predicted by the artificially enhanced parton-shower algorithm. This technique is referred to
as matching a parton-shower algorithm to a matrix-element calculation.

Since parton-shower algorithms and matrix-element calculations are formulated in rather
different theoretical frameworks, a more formal combination of the two methods than a
reweighting of the leading emission requires either that the parton-shower algorithm is formu-
lated in “matrix-element language”, or that the final-state of the matrix-element calculation
is translated into “parton-shower language”. An example of the former strategy are algo-
rithms combining matrix-element calculations with a parton shower through a subtraction
term technique similar to those used for combining fixed-order and analytical resummation
calculations in the mc@nlo [34] and powheg [35] event generators. The NLO terms which
are taken into account also by the parton shower must be identified and subtracted to avoid
double counting. These subtraction terms depend both on the details of the parton-shower
algorithm and on the process. In the case of inclusive Z/γ∗ → e+e− production the resulting
calculation includes all LO and NLO terms in αs, as well as all LL and some NLL terms to all
orders in αs. This means that the properties of the Z/γ∗ system (leading jet) are predicted
to next-to-leading (leading) order in αs, whereas all subleading jets are generated according
to the soft/collinear approximation of the parton-shower algorithm. Achieving an improved
description for sub-leading partons within this model would require extending the method to
merge a NNLO calculation and a parton shower, and this has so far not been done.

The opposite strategy, translating the matrix-element prediction into an input state ac-
cepted by a parton-shower algorithm allows for the combination of tree-level LO matrix-
elements with parton showers in a process independent way. Such techniques take real-
emission terms up to order αN

s into account, with typically N ≤ 6, as well as all LL and some

24



3.3 Combining Fixed-Order and All-Order Calculations

NLL terms to all orders in αs. Virtual corrections (loop diagrams) are not included, and
consequently the matrix-element calculation diverges for soft/collinear partons. These diver-
gences are avoided by requiring all partons to be hard and well-separated. The phase-space
region thus ignored is taken into account using a parton-shower algorithm. In the following,
the properties of the two main algorithms of this kind are outlined, using qq̄ → Z/γ∗ → e+e−

production as an example.

CKKW Merging

The CKKW algorithm [36, 37, 38] starts by generating parton+parton→ m+n events, where
n (m) denote the number of final-state particles carrying (not carrying) a QCD color charge.
I.e. for the process qq̄ → e+e− +1 parton, m = 2 and n = 1. The kinematics of the generated
events are given by a tree-level matrix-element calculation. The probability for generating
each QCD final-state multiplicity n = 0, 1, · · · , N is given by σn/

∑N
i=0 σi, where the cross

sections σi are evaluated for a fixed number of m and N is the upper number of QCD partons
which are included in the matrix-element calculation. The cross sections are evaluated using
a fixed value of µF and µR which is characteristic for the hard process. Divergences due to the
missing virtual corrections are avoided using a phase-space cut requiring each parton to be
hard and well-separated with respect to all other partons, thus dividing the final-state phase
space into one region described by the matrix-element calculation, and one region explicitly
ignored by it. The definition of hard and well-separated is that each pair of partons is more
distant from each other in phase space than a value Q2

cut, with the measure of distance
being given as the relative transverse momentum of the two partons, following the kT jet
algorithm [39].

The next step is to reconstruct the internal state of a parton shower which, if it was
“paused” after the appropriate number of splittings, would have generated the matrix-element
final state. For the example of a parton+parton→ e+e− + 1 parton event this amounts to
assuming that the final-state parton was emitted from the initial-state parton to which it is
closest in phase space, with the parton-shower evolution variable scale at which the emission
took place being given by the phase-space distance. A Sudakov weight accounts for the
parton shower not having emitted additional partons at a higher evolution-variable scale.
For each parton-shower emission, αs is evaluated at the scale given by the relative pT of the
two partons after the splitting, whereas for the matrix-element calculation αs is evaluated at
the scale of the hard interaction. To compensate for this mismatch, the event is given a weight
equal to the ratio of the value of αs evaluated at the former scale to the value of αs evaluated
at the latter scale. For initial-state emissions, an additional reweighting factor is applied to
account for the dependence of the parton shower on the proton structure. This finishes the
reconstruction of the history of a parton shower which, being paused in the middle, would
have generated the n matrix-element final-state. The parton shower is then “restarted” to
account for the soft/collinear part of the phase space which was explicitly left out of the
matrix-element calculation. Double counting is avoided by vetoing parton-shower splittings
which would generate two partons which have a larger phase-space distance to each other
than Q2

cut, giving a so-called vetoed parton shower.

MLM Merging

The MLM algorithm [40, 41] for merging tree-level matrix-element calculations and parton
showers is an alternative to the CKKW algorithm. The main difference between the two is how
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they prevent double counting. Whereas CKKW vetoes single parton-shower emissions, MLM
does not interfere with the parton-shower algorithm directly. Instead, events are rejected
if the number of hard, well-separated partons after the parton shower has finished is not
identical to the number of partons included in the matrix-element calculation. Whereas
CKKW uses the kT measure of distance to separate the matrix-element and parton-shower
parts of phase space, the MLM algorithm uses a cut on the pT of ∆R =

√

∆φ2 + ∆y2 cone
jets.

3.4 From Partons to Hadrons

So far we have dealt with partonic processes where the initial-state and final-state objects
were quanta of the fields appearing in the Standard Model Lagrangian. Due to the confining
property of the strong interaction (see Sect. 2.4), quarks and gluons are not observable objects
and only offer a high-pT description of QCD processes. For the example of a pp̄ collider, the
partonic process qq̄ → e+e− is only a high-pT model of the physical pp̄ → e+e− process. The
observable cross section, σ, can be related to the high-pT partonic cross section, σ̂, via a
factor N , into which all non-perturbative, low-pT effects are absorbed:

σ = σ̂ ⊗N . (3.4)

Since N is not predicted by perturbation theory, this equation is only useful due to a property
of QCD referred to as factorization, implying that N is independent of the details of the
partonic process. Consequently, N can be determined from σ̂1 and the measured σ1 for a set
of processes, and then used together with σ̂2 for a different process to predict the observable
σ2. The scale which separates effects being accounted for in σ̂ and N , i.e. which defines
the boundary between “high-pT ” and “low-pT ”, is referred to as the factorization scale. The
factorization scale is an unphysical artifact of the calculation, and the dependence on this
scale would cancel exactly for the exact solution. In general, the more orders in the coupling
constant which is included in a calculation, the lower is the factorization scale dependency.

3.4.1 Hadronization

The concept of PDFs is introduced to connect incoming, observable hadrons with the in-
coming partons of the perturbative calculation. A similar picture is used for connecting the
outgoing partons of the calculation with outgoing, observable hadrons. This process is re-
ferred to as hadronization, and it can be illustrated in the process e+e− → hadrons, described
at the parton level as e+e− → qq̄. The simplest hadronization model assumes that the tran-
sition from partons to hadrons can be described for each parton independently (independent
hadronization). The hadronization function fh

p (z, k2
T ) for a parton of flavor p specifies the

probability for the production of a hadron of type h, carrying a fraction 0 < z < 1 of the
parton energy, with transverse energy kT relative to the parton. Assuming the validity of
a partonic e+e− → Z/γ∗ → qq̄ prediction, the parameters of the hadronization functions
can be determined so that this prediction is compatible with experimental measurements
of the hadrons in e+e− → Z/γ∗ → hadron production. Independent hadronization models
were not able to describe the topology of e+e− → Z/γ∗ → qqg events seen by the JADE
experiment [42]: the hadron-density is enhanced in the region between a quark and a gluon,
and such correlations cannot be accounted for by independent hadronization. However, such
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correlations were predicted by the Lund string model [43] which assumes that the hadroniza-
tion process is a function of the color field, or string, spanned out between pairs of quarks.
Gluons are represented as kinks along the string. Each string is independently decayed into
hadrons using hadronization functions. Another model able to describe experimental data,
the cluster hadronization model [44], is based on the independent hadronization of clusters
formed from pairs of neighbouring quarks after all gluons have been forced to split into qq̄
pairs.

Every hadronization model depends on the details of the partonic calculations used when
extracting the model parameters from experimental data. If 2→2 parton-level predictions are
used, the effects of higher-order and logarithmically enhanced perturbative terms are absorbed
into the hadronization model, leading to the hadronization model becoming dependent on
the details of the hard scattering. To assure a process-independent hadronization model,
and since perturbative effects can be accounted for more correctly using a parton shower,
hadronization models are instead defined using a full matrix-element plus parton-shower
prediction for the perturbative part. The fragmentation model will depend on the lower
cut-off scale of the parton shower, i.e. on the scale at which the fragmentation model was
tuned, typically ∼ 1 GeV. This scale is the factorization scale which separates the effects
accounted for by the parton shower from those absorbed into the hadronization model. Since
hadronization models are only defined for partons at a fixed, low energy scale, they cannot
be used to translate the high-energy-scale final-state partons of a fixed-order calculation into
hadrons. Doing so would ignore the impact of logarithmically enhanced higher-order terms,
invalidating the resulting particle-level prediction.

3.4.2 Parton Distribution Functions

Whereas hadronization models describe the transition from outgoing partons into outgoing
hadrons, parton distribution functions (PDFs) describe the relationship between incoming
partons and incoming hadrons. The flavors of the incoming hadrons are given by the experi-
mental accelerator setup. A parton distribution function, fh

p (x, µ2
F ), describes the probability

of finding a parton of flavor p inside a hadron h with the parton carrying a fraction 0 < x < 1
of the total momentum of the hadron. The PDFs depend on the energy scale at which
the hadron is probed, the factorization scale µ2

F . This factorization scale separates effects
which are accounted for in a matrix-element calculation from those absorbed into the PDFs.
The choice of factorization scale is not uniquely defined, giving rise to a systematic uncer-
tainty referred to as the factorization scale uncertainty. The observable cross section for
pp̄ → Z/γ∗ → e+e− production, σ, can be expressed in terms of the partonic cross section
for qq̄ → Z/γ∗ → e+e− production, σ̂, and the proton/antiproton PDFs, fh

p (x, µ2
F ), as

σ =
∑

q,q̄

∫

dx1

∫

dx2

[

fp
q (x1, µ

2
F )f p̄

q̄ (x2, µ
2
F ) + fp

q̄ (x1, µ
2
F )f p̄

q (x2, µ
2
F )
]

σ̂, (3.5)

where the sum runs over all possible initial-state quark flavors. Equation (3.5) can be used
either to determine the PDFs if σ and σ̂ are known, or to predict the observable σ from the
perturbative calculation of σ̂ if the PDFs are known. Due to the property of universality PDFs
extracted by fits to experimental measurements for one class of processes can be used to make
observable predictions for all other processes. Extracting PDFs from data using Eq. (3.5)
introduces a dependence on the perturbative order used for computing σ̂ and for defining
the running of αs. Several different sets of PDFs are available, for instance those determined

27



Chapter 3 Phenomenology of pp̄ Collisions

by the CTEQ [45] and MSTW [46] collaborations. As seen above, hadronization model
parameters are tuned to data for partons at a fixed energy scale from parton-shower-based
parton-level predictions. Consequently, hadronization models cannot be used for fixed-order
calculations, and such calculations are only able to make predictions at the parton level. In
contrast, the energy-scale dependence of the PDFs can be described perturbatively using
DGLAP equations4 [27, 47, 48]. Consequently, PDFs can be defined independently of parton
showers, and they can be used both in analytical calculations and in parton-shower based
event generators. The x-dependence of the PDFs is not known theoretically and must be
extracted from experimental measurements. The PDFs of the proton/antiproton have been
determined over an x range of approximately [10−5, 1] [45] by fitting perturbatively calculated
differential cross section predictions to a long range of experimental measurements. The
measurements used come from ep → eX deep-inelastic scattering experiments from the HERA
experiments, QCD multijet measurements from the Tevatron, asymmetry measurements in
vector-boson production from the Tevatron, as well as a range of lower-energy fixed-target
measurements [49]. Once determined by fitting to data, the PDFs can be evolved in µ2

F

and used together with perturbative calculations and Eq. (3.5) to predict observable cross
sections, both in the context of analytical and parton-shower based calculations.

3.4.3 Intrinsic pT

It is assumed that partons restricted inside a hadron will have a non-zero, intrinsic transverse
momentum due to Heisenberg’s uncertainty principle. This is a non-perturbative phenomenon
that is not accounted for in PDFs, and is normally modelled by assigning a non-zero pT to
the two initial partons according to a Gaussian function whose width is extracted from
measurements of the low-pZ

T region for pp̄ → Z/γ∗ production. While theory suggests an
intrinsic pT of a few hundred MeV, parton-shower based calculations have been found to
favour values as high as 2 GeV [50, 51]. This discrepancy might indicate that the impact of
perturbative, sub-leading logarithmic terms not accounted for in the LL parton shower are
absorbed into the intrinsic pT model [26].

3.5 Underlying Event

The term underlying event is not well-defined in the literature. Here, we use it to refer to any
interaction occurring during a single bunch-crossing (see Chapter 4) which is not taken into
account in the description of the hard 2 → n scattering. This definition includes secondary
interactions between the pp̄ pair of the hard scattering, the description of the remnants of
the pp̄ pair, and of interactions between other pp̄ pairs in the same bunch crossing.

3.5.1 Multiple Parton Interactions

Multiple parton interaction (MPI) models aim at accounting for the possibility that more than
one parton-parton interaction occurs for the pp̄ pair of the hard scattering. The existence
of such secondary interactions was established in the γ + 3 jets channel by selecting events
where two and and two objects (i.e. γ+jet and jet+jet) have similar values of pT and are
back-to-back in the transverse plane [52]. The amount of such event exceeded what could be

4Based on partonic 1 → 2 splitting processes described by the same Altarelli-Parisi splitting functions [27]
which are used in parton-shower algorithms.
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explained by perturbative calculations of parton+parton→ γ + 3 jets. A widely used MPI
model is one [53] based on a series of kinematically independent, perturbative parton-parton
scatterings arising from a single pp̄ pair. Having generated the hard scattering the PDFs
are modified to reflect the momentum and color carried by the two hard scattering initial-
state partons. Secondary interactions, which are assumed to be pure QCD processes5, are
generated according to perturbative 2→2 calculations. A lower pT cut-off for the secondary
interactions is used to avoid the low-pT divergences of the 2→2 QCD cross section and to tune
the predictions to data [54]. Assumptions are made on the radial distribution of partons inside
the protons, and each collision is assigned an impact parameter defining the “overlap” between
the pp̄ pair. The probability of multiple interactions increases with increasing overlap.

3.5.2 Beam Remnants

Having extracted one or more initial-state parton to account for the hard scattering as well
as any multiple parton interaction scatterings (referred to as the drawn partons below), the
color-charged remnant of the incoming (anti)proton needs to be modelled. Depending on the
flavours of the extracted partons, the remnant is described by a di-quark in case the initial-
state particle of the perturbative calculations is a quark, or a quark + di-quark constellation
in case of a gluon. The color charge of the remnant is given by the color of the drawn partons,
and by the fact that the incoming (anti)proton was color neutral. The longitudinal momentum
component of the remnant is defined as the fraction of the original (anti)proton momentum
not carried away by the drawn partons, whereas the transverse component is given as the
opposite of the intrinsic pT assigned to the drawn partons. In general, premnant

T << premnant
z ,

and the beam remnants do not give an important contribution to high-pT observables.

3.5.3 Multiple pp̄ Interactions

Due to the experimental setup (see Chapt. 4), there is a possibility that more than one
pp̄ interaction takes place during each bunch crossing, and such additional interactions are
referred to as pile-up events. Secondary pp̄ collisions can either be accounted for using model
predictions [50], or by overlying the simulated hard scattering process with detector signals
registered during an arbitrary bunch crossing. The latter method was used for this study, as
is described in more detail in Sect. 4.3.

3.6 Event Generators

The term event generator is used for a computer code which uses a Monte-Carlo technique to
generate events consisting of a list of initial-state and final-state objects with specified four-
momentum vectors. The events are generated such that if a kinematic distribution is plotted
for a large sample of events, it will reproduce the distribution predicted by the calculation
on which the event generator is based. The events can either be weighted, i.e. each event
has a weight which must be used when filling the histogram of an observable, or unweighted,
corresponding to each event having a weight of 1. An event generator is said to be a parton-
level (particle-level) event generator if the list of initial-state and final-state objects consist
of partons (observable particles).

5Justified by the large cross section of pure QCD processes compared to EW processes.
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3.6.1 mcfm

mcfm [55] is a fortran-based parton-level event generator based on fixed-order calculations
at LO and NLO for a long list of processes. For Z/γ∗ + N partons it delivers predictions at
NLO for N ≤ 2 and LO for N ≤ 3.

3.6.2 pythia

pythia [50] is a fortran-based particle-level event generator based on LO matrix-element
calculations and, depending on version and configuration, either a Q2-ordered or a pT -ordered
parton-shower algorithm. For Z/γ∗ production the first parton-shower emission is reweighted
to a LO Z/γ∗ + 1 parton matrix-element calculation. Hadronization is accounted for using
the Lund string model. Depending on the choice of parton-shower algorithm there are two
different multiple parton interaction models. In the model used together with the Q2 parton
shower, described in Sect. 3.5.1, the MPI partons are not passed on to a parton shower, but
this has been implemented in the newer model used together with the pT -ordered shower.
Intrinsic pT is described by a Gaussian model.

3.6.3 herwig and jimmy

herwig [56] is a fortran-based particle-level event generator which is similar to pythia.
It uses an angular-ordered parton shower and a cluster-hadronization model. For Z/γ∗ pro-
duction the first parton-shower emission is reweighted to LO Z/γ∗ +1 parton matrix-element
calculations, using two different reweighting schemes for the low and high pT regions. her-

wig has its own underlying event model, but a more detailed description of multiple parton
interaction is offered by connecting herwig to the jimmy [57] MPI generator.

3.6.4 sherpa

sherpa is a c++-based event generator which uses the CKKW algorithm (see Sect. 3.3.2)
to merge tree-level matrix-element predictions with a virtuality-ordered parton-shower algo-
rithm. Partons are translated into hadrons using a cluster-hadronization model. The multiple
parton interaction model is similar to the one described in Sect. 3.5.1, but extended to apply
parton showering to the 2→2 MPI processes.

3.6.5 alpgen+pythia and alpgen+herwig+jimmy

alpgen+X is a fortran-based code which combines tree-level matrix-element predictions
from alpgen with the pythia or herwig+jimmy event generators. The latter codes ac-
count for parton showering, multiple parton interactions, beam remnants, hadronization and
intrinsic pT . The MLM algorithm is used to avoid double counting, and CKKW-style αs-
reweighting is used to smoothen the transition between the matrix-element and parton-shower
phase-space parts.

3.6.6 mc@nlo

mc@nlo is a fortran-based code which merges NLO matrix-element matrix-element pre-
dictions with a parton shower. The herwig generator the parton-shower algorithm, the
hadronization model, and jimmy can be used to simulate MPI.
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Figure 3.4: An illustration of the creation of a jet in a pp̄ scattering, and its interaction with
with the experimental detector setup. The jet object can be defined as a spray of
almost collinear partons, particles or energy deposits in the calorimeter. (From
Ref. [58].)

3.7 Connecting Partons, Particles and Energy-Deposits in the
Detector

Due to the confining property of the strong interaction the final-state objects of a parton-level
calculation are not observable experimentally. Nevertheless, the topology of the observable
particles arising from QCD interactions contain structures which can be identified with par-
tons, and these structures are defined using a so-called jet algorithm. A jet algorithm uses
a list of four-momentum vectors as input. Four-momentum vectors which are close to each
other, defined by some metric, are grouped together to form jets. For a simulated event
generated using an event generator code, jets defined from the list of stable particles in an
event can be identified with jets formed from the list of partons that were given as input
objects to the hadronization model. In this way, observable particle-level jets are mapped
onto non-observable parton-level jets. The properties of parton-level jets are computable
using only perturbation theory and PDFs, thereby allowing for comparison between experi-
mental measurements of QCD related properties and the predictions of the Standard Model
Lagrangian with a minimal dependence on phenomenological models like hadronization. Jet
algorithms are also used to define jets from clusters of energy-deposits in so-called calorimeter
sub-detector systems used in high-energy-physics experiments for amongst others for detect-
ing jets (see Chapters 4 and 5). An illustration of jets at the parton, particle and detector
levels is given in Fig. 3.4.
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The main property which characterizes a jet algorithm is the metric which defines the
distance between pairs of input objects. Another property of the algorithm is how the the
four-momentum vector of a jet is defined in terms of the four-momentum verctors of the
input objects (recombination scheme). The most common recombination is that the jet four-
momentum vector is given as the sum of the four-momentum vectors of the input objects
which belong to it. In case a single input object can be clustered into two different jets, the
jet algorithm must specify how to distribute the particle four-momentum vector between the
two jets.

For a jet algorithm to define a mapping between parton-level, particle-level and detector-
level jets which is as close as possible to one-to-one, both in terms of the number of jets and
of their four-momentum vectors, the algorithm should have the property of being collinear
and infrared safe. Infrared safe means that the list of identified jets should not change if a
low-energetic object is added to the list of input objects. Collinear safe means that the list
of identified jets does not change if one input object is replaced by two collinear objects with
the same four-momentum vector sum as the original particle. For a jet algorithm to be usable
its implementation as computer code must run fast enough, i.e. be CPU efficient enough, to
allow for the analysis of a large number of eventsin a reasonable amount of time.

3.7.1 Cone Jet Algorithms

A cone-jet algorithm starts out with a list of initial directions (seeds). A geometrical cone
with starting-point at the collision point and with a opening half-angle R is pointed in each
of the initial directions (trial cone). All input objects which satisfy ∆R(cone axis, input
object) < R are said to belong to the cone. The most commonly used recombination scheme
defines the four-momentum vector of the cone as the sum of the four-momentum vector of
all input objects which belong to it. If the the four-momentum of the cone is parallel to the
cone axis, the cone is said to be stable. If the cone is not stable, the axis specified by the four-
momentum of the cone defines the direction of a new trial cone, and the process is repeated
until a stable cone is found. This procedure is performed for each seed, resulting in a list
of stable cones. Nothing prevents an input object from laying inside of two different stable
cones, and modern cone-jet algorithms rely on the principle of split-and-merge to specify how
to treat this situation: if the ratio of the shared pT to the pT of the softest jet is larger than a
parameter f , the two are merged – if not each overlap-particle is associated to the closest jet.
Due to merging, a jet can contain particles which for which ∆R(particle, jet-axis) exceeds R.
The parameter f is refered to as the split-and-merge fraction.

In the simplest cone-jet algorithms the list of initial directions is taken to be the list of
directions of the input objects. Such an algorithm is not infrared safe as demonstrated by
a hypothetical event consisting of two high-pT objects with a separation of R < ∆R < 2R.
Each object specifies a trial cone, but each trial cone only contains one object. If a low-pT

object is added inbetween the two original objects the corresponding trial cone will contain
both high-pT objects, leading to the identification of one jet instead of two. In the following,
two cone-jet algorithms which adress this issue are presented.

DØ Run II Mid-Point Cone-Jet Algorithm

The DØ Run II Mid-Point cone-jet algorithm [39] introduces a preclustering stage to reduce
the needed CPU time per event. The list of input objects, e.g. partons, particles or calorimeter
objects, is sorted in pT , and all objects inside a R = 0.3 cone around the highest-pT object
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are removed from the list of input objects and are combined to form the first precluster
object. The process is repeated until the list of input objects is empty. All precluster objects
are required to fulfill pT > 1 GeV. The list of initial directions is given by the direction
of all precluster objects, as well as all directions pointing to the mid-point between each
pair of precluster objects. The addition of these mid-point directions to the list of initial
direction improves the infrared stability of the algortihm. The recombination scheme is given
by four-momentum vector addition, and split-and-merge is performed using f = 0.5.

SISCone Jet Algorithm

The SISCone jet algorithm [59] is a cone-jet algorithm using the vertices of a two-dimensional
(y, φ) grid as initial directions, with y being the the rapidity (y) and φ the azimuthal angle.
This assure a fully infrared safe algorithm since the list of trial cones does not depend on
the list of input objects. Previous cone-jet algorithms which were independent of the list
of input objects failed to be useful due to a prohibitively large consummation of computer
power. The SISCone algorithm by-passes this problem by using a geometrically motivated
clustering method which constraints the amount of computer power needed per event. In
order to resolve situations where one input object belongs to two different jets, the same
split-and-merge algorithm is used as in the DØ Run II Mid-Point algorithm.

3.7.2 Other Jet Algorithms

The kT jet algorithm [60, 61] uses a different metric than cone-jet algorithms. Instead of
relying on only the angle between two objects, it defines the distance between two parti-
cles approxmately as the transverse momentum of the lowest-pT particle with respect to the
highest-pT particle. This metric is related to the splitting kernels used in parton-shower
algorithms: the probability of a given parton-shower splitting to be generated is inversely
proportional to the kT distance between them. This property makes the kT algorithm suit-
able for analytical resummation calculations, and it is also why this algorithm is used in the
CKKW algorithm for reconstructing a parton-shower history for final-state particles gener-
ated according to a matrix-element calculation (see Sect. 3.3.2). The measure of distance in
the kT algorithm between a particle i and another particle j is

dij = min(p2
T,i, p

2
T,j)

∆R2
i,j

D2
(3.6)

where pT,i and pT,j are the transverse momenta of the two particles, ∆Rij the opening angle
between the two, defined in terms of φ and y, and D is a unit-less parameter of the algorithm.
In addition, the distance between the particle i and the beam line is defined as

diB = p2
T,i. (3.7)

The algorithm starts with a list of current particles being equal to the list of all input particles.
The steps of algorithm are as follows:

1. For each i in the list of current particles, compute diB and dij for all possible choices
of j, and sort the resulting d-values.

2. If the smallest d-value is a dij value, the two particles are replaced in the list of current
particles by their four-momentum vector sum.

33



Chapter 3 Phenomenology of pp̄ Collisions

3. If the smallest d-value is a diB value, the particle i is a jet on its own and is removed
from the list of current particles and added to the list of identified jets.

4. Repeat from step 1 until the list of current particles is empty.

The parameter D determines the size of the resulting jets and is analogous to the cone-size
R of cone-jet algorithms: if no particle j with ∆Ri,j < D, the distance diB for a particle i is
smaller than all values dij , and the particle i forms a jet on its own according to step 3 in the
algorithm above. A feature of the kT algorithm is that there is no lower limit on the transverse
momentum of the identified jets. Therefore, an additional parameter pcut

T , specifying a lower
transverse momentum criterion that jets have to satisfy is often introduced.

The Aachen/Cambridge jet algorithm [62, 63] is anlogous to the kT algorithm, but with
the metric being

dij =
∆Rij

D
. (3.8)

As for the kT algorithm, the parameter D defines the size of the identified jets. The pair
of particles i and j with the lowest value of dij are replaced by their four-momentum vector
sum. If, for a particle i, no j exist for which dij < 1.0, i.e. for which ∆Rij < D, i is a jet.
The process is repeated util the list of current particles is empty, and as for the kT algorithm
a minimum jet pT can be required. Whereas the clustering of the kT algorithm is ordered in
relative transverse momentum, the Aachen/Cambridge algorithm gives and angular ordered
clustering sequence.
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Final-state
Process

Perturbative
α0

s terms α1
s terms α2

s terms α3
s terms

objects order

Partons

Z/γ∗ inclusive

LO x
NLO x x
LO+LL x LL LL LL
NLO+NLL x x LL+NLL LL+NLL

Z/γ∗+parton
LO x
NLO x x

Z/γ∗+2 partons
LO x
NLO x x

Z/γ∗+3 partons LO x

Particles

Parton-shower
x LL LL LL

(pythia, herwig)
Parton-shower with

x real / LL LL LLmatrix-element matching
(pythia, herwig)
NLO + parton shower

x x LL LL
(mc@nlo, powheg)
CKKW / MLM

x real / LL real / LL real / LL
(sherpa, alpgen+pythia)

Table 3.1: An attempt to illustrate which parts of the full, all-order perturbative interaction
amplitude are taken into account in the various models described in the main text,
for the example process of Z/γ∗(+jets) production. The label x indicates that all
terms to the given order which are relevant for the process in question are taken
into account. The label LL (LL+NLL) indicates that only the leading (leading and
next-to-leading) logarithmically enhanced terms are included at the given order.
The label real means that only real-emission terms are taken into acccount at
the given order, i.e. that virtual-correction terms arising from loop diagrams are
ignored.
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Chapter 4

Experimental Setup: Tevatron and the
DØ Detector

The Tevatron accelerator [64], located at the Fermi National Accelerator Laboratory [65]
nearby Chicago, USA, delivers proton-antiproton collisions for two multipurpose experiments,
CDF and DØ. From 1992 to 1996 the Tevatron operated at a centre-of-mass energy of 1.8
TeV (Run I). Each experiment recorded data sets corresponding to an integrated luminosity
of 120 pb−1, leading to the discovery of the top quark [66, 67] in 1995. After a major upgrade
of both the accelerator and the detectors, a second period of data taking was started in 2002
(Run II). Until today each experiment has collected data sets corresponding to an integrated
luminosity of ∼ 6 fb−1. Until the end of Run II, which is foreseen to last until 2010 or 2011,
this is expected to increase to 8-10 fb−1.

4.1 The Tevatron Accelerator

The Tevatron is the last step in a long chain of accelerators, see Fig. 4.1. A Magnetron
transforms hydrogen gas into H− ions which are accelerated first to 0.75 MeV by a Cockcroft-
Walton accelerator and then to 400 MeV by a linear accelerator referred to as the LINEAC.
The H− ions are passed through a thin carbon foil in order to remove the electrons, leaving
a beam of protons. The protons are accelerated to 8 GeV in a circular synchrotron (cir-
cumference 0.2 km) referred to as the Booster. The next and second-last step of the proton
acceleration chain is the Main Injector, which is a circular synchrotron with a circumference
of 3.3 km. The Main Injector delivers 150 GeV proton beams to the Tevatron accelerator,
and is also the initiator of the antiproton generation chain. A 120 GeV proton beam is
collided with a fixed target made of nickle, and antiprotons with an energy of ∼ 8 GeV are
extracted from the arising spray of hadrons using a charge-momentum spectrometer. The
antiprotons are turned into a manageable beam using the Debuncher synchrotron, removing
the bunch structure inherited from the initiating proton beam while providing a uniform
energy of 8 GeV. Both the Debuncher and the following Accumulator storage synchrotron
utilize stochastic cooling [68] to reduce the spread in transverse and longitudinal energy of
the antiprotons. The Accumulator is followed by the Recycler which shares tunnel with the
Main Injector. The purpose of the Recycler is to recycle antiprotons from the Tevatron, and
to enrich the recycled beam with “new” antiprotons from the Accumulator. Due to technical
problems early in Run II, the Accumulator was long the sole provider of antiprotons to the
Recycler, but since 2005 the Recycler also accepts antiprotons from the Tevatron remaining
from a prefious fill. The Accumulator has a large storage capacity for 8 GeV antiprotons and
applies both stochastic cooling and electron cooling [69] to further increase the uniformity of
the beam. Once a sufficiently large number of antiprotons has been accumulated in the Re-
cycler the antiprotons are transferred to the Main Injector and accelerated to 150 GeV. The
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Figure 4.1: Graphical representation of the pp̄ accelerator chain which culminates in the Teva-
tron.

Main Injector delivers beams of protons and antiprotons to the main Tevatron accelerator
(circumference 6.28 km), which increases the energy to 980 GeV and provides collisions for
the CDF and DØ experiments. The Tevatron beams circulate in opposite directions with an
orbit time of 20.9 µs. Each beam is split into 36 bunches of protons/antiprotons. A bunch
contains of the order of 2.5 ·1011 (5.4 ·1010) protons (antiprotons), and has a length of ∼ 2 ns
or 60 cm. The bunches are not uniformly distributed around the ring, but are located in 3
so-called super bunches, each separated by 2.6 µs. A super bunch contains 12 bunches, each
separated by 396 ns. Due to interactions of a beam with the other beam, with beam gas or
with the beam pipe, the quality of the beams reduces with time. The limiting factor for the
Tevatron luminosity is the availability of antiprotons. Accumulating enough antiprotons in
the Recycler to inject a new beam takes about 20 hours, and this defines how long each store
lasts.

4.2 The DØ Detector

The DØ detector is a multipurpose detector designed to measure the kinematic properties
of the final state particles in pp̄ collisions delivered by the Tevatron accelerator, and to be
able to distinguish between electrons, muons, taus, photons and hadron jets. The detector
provides nearly 4π solid angle coverage and follows the standard design with cylindrical
layers of subdetector, see Fig. 4.2. The first layer – the central tracking system – detects the
trajectories of charged particles and contains a magnetic field which enables the measurement
of the momentum of a track from its curvature. The second layer – the electromagnetic (EM)
calorimeter – measures the energy of electrons and photons, as well as parts of the energy
of hadron jets. The third layer – the hadronic (HAD) calorimeter – measure the remaining
energy of hadron jets. Only muons and neutrinos reach the outermost, forth layer – the muon
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Figure 4.2: Sketch of a generic multipurpose high-energy physics detector [70].

system – which is used to detect muons. The muon system contains a magnetic field, which,
in combination with the central tracking system, allows for a measurement of muon momenta.
The transverse components of the sum of energies carried by neutrinos is indirectly measured
through momentum conservation as the opposite of the vector sum of all energies directly
measured in the event, thus completing the measurement of all final state particles predicted
by the Standard Model.

A cross-sectional overview of the DØ Run II detector is given in Fig. 4.3. The following
sections contain a brief overview of the DØ detector based on [71], concentrating on the
aspects relevant for the analysis presented later in this thesis. In the description of the
detector, and later in the analysis, a right-handed coordinate system is used where the z-
axis points in the direction of flight of the proton beam, and the y-axis points upwards (see
Fig. 4.3).

When referring to the position of detector components (detector coordinate system), the
origin is taken to be the geometrical center of the detector. The corresponding polar coor-
dinate system is given by the distance to the origin and the azimuthal angle, φdet, and the
polar angle, θdet. Due to the cylinder symmetry of the detector, r, the distance from the z
axis is often used instead of the the distance to the origin. The pseudo-rapidity, defined by
ηdet = − ln[tan(θdet/2)], approximates the true rapidity y = 1

2 ln[(E + pzc)/(E − pzc)], for
finite angles in the massless limit (m

E → 0). When referring to the kinematic properties of the
pp̄ collisions final state, the so-called physics coordinate system, where origin is the primary
pp̄ interaction vertex, is used. The corresponding angles are labelled, φphys, θphys and ηphys,
or just φ, θ and η.

4.2.1 Central Tracking System

The aim of the central tracking system is to accurately measure the position of charged
particles as they cross the various detector layers (hits), with a minimal energy loss for
the particles. The hits can be used to reconstruct the trajectories of charged particles.
The central tracking system is located inside a 2 T solenoidal magnetic field allowing track
momenta to be deduced from the curvatures of the tracks. Tracking information is used for
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Figure 4.3: The DØ Run II detector [71].

the identification of the primary interaction vertex, electrons and muons, as well b quarks
via the decay vertices of relatively long-lived b hadrons. An overview of the central tracking
system is given in Fig. 4.4.

SMT

The silicon mictrostrip tracker (SMT) is the first detector system encountered by particles
after they enter the DØ detector. Its purpose is to provide accurate tracking and vertexing
for ηdet < 2.5. The relatively broad interaction vertex distribution, whose width is σz ≈
25 cm, guides the choice of geometric layout for the SMT. The silicon modules contain
about 10 cm long strips which give a signal if crossed by a charged particle. Neighbouring
layers have different angular orientation of the strips, allowing for the precise measurement
of (ηdet, φdet, r) points along the trajectories of charged particles. The silicon modules are
mounted on barrel and disks, see Fig. 4.5. Six four-layered barrels with a length of 12 cm and
2.7 < r < 11 cm are capped at high |z| by so-called F-disks. Forward of the three disk+barrel
pairs, units of three more discs follow at 43 < |z| < 53 cm. The purpose of the barrels is
to provide accurate tracking at low values of ηdet. The disks fulfill this task for high ηdet,
together with additional pairs of two so-called H-disks at |z| = 100 cm and 121 cm. The
latter disks act as a high-ηdet extension of the central fiber tracker (CFT, see below).
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Figure 4.4: Cross-sectional overview of the central tracking system [71].

CFT

The CFT provides tracking using long, scintillating fibers mounted on eight cylinders at
20 < r < 52 cm. The two innermost cylinders have a length of 1.66 m to make room for the
outermost SMT disks, whereas the six outer cylinders are 2.52 m long. The CFT provides
tracking up to |ηdet| ≈ 1.7. Each cylinder supports doublet layers of 835 µm thick fibres
oriented along the beam axis, and a second doublet layer shifted by ±3◦ in φdet, with the
sign alternating between the different layers. Clear readout fibres are attached to one end
of the scintillating fibres; the other ends are mirrored. The readout fibres transfer the light
signal to photomultipliers which have a quantum efficiency of ≥ 75% and are capable of
detecting single photons. In total, the CFT uses about 200 km of scintillating fibres and
800 km of clear readout fibres.

Solenoidal Magnet

The central tracking system contains a homogeneous magnetic field of 2 T provided by a
superconducting solenoidal magnet made of Cu:NbTi which is situated at r ≈ 60 cm and has
a length of 2.7 m. The solenoidal system was designed to optimize the tracking momentum
resolution and pattern recognition capabilities while at the same time limiting the amount of
material in front of the calorimeter. The magnet, including the cryostat, has a thickness of
about one electromagnetic radiation length (X0) at η = 0. The superconductors are operated
with a current of 4.7 kA at a temperature of ∼ 4 K using liquid Helium cooling, well below the
critical temperature of NbTi (∼ 10 K). The time needed to cool down the 1.5 tonne structure
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Figure 4.5: The geometric layout of the SMT system, consisting of barrels and disks carrying
silicon sensors [71].

from room temperature to operating temperature is about 40 hours, and the process leads
to a contraction of the physical dimensions of the structure by 0.4% [72].

4.2.2 Calorimeter System

Having measured the trajectories of charged particles, the calorimeter aims to fully absorb
and measure the energy of all particles, except for muons and neutrinos. The calorimeter also
aids in separating hadronic jets from electrons and photons. The overall transverse energy
balance in each event is also measured using the calorimeter, with help of the muon systems
(see below), thus providing an indirect measurement of the transverse momentum sum of the
neutrinos in the event and any non-SM particles escaping detection.

The calorimeter is divided into three section, each housed in its own cryostat: the cen-
tral calorimeter (CC) covering |ηdet| . 1.0 and two endcap calorimeters (EC) extending the
coverage up to |ηdet| ≈ 4.0. In each section, the four innermost layers make up the electro-
magnetic (EM) calorimeter. Further out are the fine hadronic (FH) and coarse hadronic (CH)
calorimeters. The calorimeters are composed of three main elements: passive absorber plates
which initiates particle showers; liquid Argon which acts as the active material, sampling the
shower via ionization; and copper readout plates on which the ionization electrons are col-
lected using a 2 kV electric fields. The absorber plates in the EM (FH; CH) calorimeter are
made of 3− 4 mm (6 mm; 47 mm) thick layers of depleted uranium (uranium-nobbium; cop-
per (CC) and stainless steel (EC)). Several cells with similar (ηdet, φdet) coordinates share the
same readout channel, forming a readout cell. Similarly, several readout cells are combined
into projective calorimeter towers, see Fig. 4.6. The boundary regions between each tower,
referred to as φ-cracks, have reduced energy sensitivity. The calorimeter has a granularity of
∆ηdet × ∆φdet = 0.1 × 0.1. An exception is the third EM layer, where the peak of the EM
showers are expected, which has a finer resolution of 0.05 × 0.05 to improve the directional
calorimeter measurement of electrons for matching with tracks. Electromagnetically interact-
ing particles have a mean free path of flight in uranium of X0 ≈ 3.2 mm. The EM calorimeter
has a depth of ∼ 20X0, meaning that most EM showers deposit their entire energy without
reaching the hadronic calorimeter. Hadronic particles have a significantly weaker interaction
with uranium, and as a result the EM calorimeter accounts for only 0.8λA, with λA being
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Figure 4.6: The structure of the DØ calorimeter [71].

the nuclear interaction length (or the mean free path of hadronic particles with respect to
gluon bremsstrahlung). The total depth of the calorimeter corresponds to 7λA, containing
more than 99% of all hadronic energy in the event. Hadronic particles interact with the
absorber plates, generating mostly charged and neutral pions. Only neutral pions, decaying
to two photons, gives a significant amount of ionization in the liquid argon. One consequence
of this is that statistical fluctuations in the amount of π0s created in hadronic showers lead
to an intrinsically worse energy resolution for jets than for electrons or photons. Another
consequence is that hadronic energy showers have a broader lateral extension than pure EM
showers, a fact that is exploited to distinguish hadronic jets from electrons and photons.

4.2.3 Muons System

The three-layered muon system uses proportional drift tubes to provide accurate tracking
for |η| . 1.0, with fast scintillators being used for triggering and for timing information to
associate muons with a specific bunch crossing. The coverage is extended to |η| . 2.0 using
mini drift tubes in addition to scintillators. A toroid, located between the first and the
two last muon system layers, provides a 1.6 − 1.8 T magnetic field to allow for momentum
measurements independent of the central tracker. The muon system lacks coverage in the
downward directions where the support structures of the DØ detector are located (4.25 <
φdet < 5.15).

4.2.4 Luminosity Counter

The main task of the luminosity counters is to determine the instantaneous Tevatron luminos-
ity at the DØ interaction point by measuring the total inelastic pp̄ cross section. This is done
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Figure 4.7: Schematic overview of the DØ trigger and data acquisition system [71].

using two arrays of 24 plastic scintillator counters at z = ±140 cm covering 2.7 < |ηdet| < 4.4
(see Fig. 4.4). Additional tasks of the luminosity counters are to provide a fast measurement
of the z coordinate of the interaction vertex, and to measure the vertex multiplicity as well
as the beam halo rates.

4.2.5 Trigger and Data Acquisition System

The Tevatron delivers pp̄ bunch crossings with a frequency of 1.7 MHz but the event storage
capacity to tape is only 50 Hz. The task of the trigger system is therefore to select the
0.03 per-mill most interesting bunch crossings which can be stored for offline analysis. The
selection is done in three levels, as illustrated in Fig. 4.7.

L1

The L1 trigger is implemented using custom-designed hardware. Detector information cor-
responding to ten bunch crossings can be kept on hold in a buffer awaiting the L1 trigger
decision, giving a decision time of ∼ 4 µs and a reduction in rate from 1.7 MHz to 2 kHz. The
L1 trigger decision is based mainly on information from the calorimeter, the CFT and the
muon system. Electron triggers require ∆φdet×∆ηdet = 0.2×0.2 EM calorimeter towers with
ET above a certain threshold, typically 5 − 10 GeV. Other triggers use tracking information
from the CFT and from the muon system.

L2

The L2 trigger, implemented using hardware engines in combination with embedded micro-
processors, reduces the event rate from 2 kHz to 1 kHz. At this level, correlations between
physics objects can be used. For instance, some electron triggers require a track candidate to
point towards the EM calorimeter tower, or puts an upper limit on the amount of transverse
energy deposited nearby the EM calorimeter tower.

L3 and the Data Acquisition System

For events passing the L2 trigger the entire detector is read out and the digitized event
information is sent to a dedicated computer farm using the L3 data acquisition system,
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which has a capacity of 250 MB/s. The high level, fully programmable L3 software trigger
system reconstructs physics object candidates which are similar to those used in the offline
event analysis. Electron candidates are identified using ∆R = 0.25 calorimeter cones, with
threshold on the transverse energy, the ratio of the EM energy in the cone to the EM+HAD
cone energy, as well as the electron isolation. Track candidates are reconstructed using
detailed algorithms combining hits from the SMT and CFT systems, and some electron
triggers require a track pointing towards the calorimeter electron candidate.

4.2.6 Offline Reconstruction

Events passing the L3 trigger are written to tape and made available for offline analysis.
Offline reconstruction algorithms available through the DØreco package [73] associate elec-
tronics channels with detector modules, with the output being e.g. energy clusters in the
calorimeter or hits in the tracking system. Detector-specific calibration constants are applied
before physics objects candidates are identified (for details, see Chapt. 5). The resulting event
samples are made available in several data formats, ranging from the DST format, containing
the full event information, to the ROOT-based [74] Common Analysis Format (CAF) [75],
ntuples providing a compact format with the information relevant for most physics analysis.
The latter format was used for this analysis, using CAF samples provided by the DØ Common
Samples Group [76].

4.3 Simulation of the Experimental Setup

To be able to understand the connection between the event information registered with the
DØ detector and the physics governing the pp̄ collisions, it is essential to have a detailed
computer simulation of each step in the experimental setup. Particle-level event generators
are used to simulate pp̄ collision. A GEANT-based [77] simulation package called DØgstar
[78] is used to describe the interaction between the outgoing particles and the various sub-
systems of the DØ detector. The simulated energy deposits are converted into the format
that real data has at this stage using the DØsim [79] package. It is essential to account for
detector noise and inefficiencies, for the possibility of more than one pp̄ scattering during
the same bunch crossing, and for electrical cross talk with neighbouring bunch crossings due
some detector elements, like the calorimeter, which have readout time being longer than the
time delay between two consecutive crossings. These effects are accounted for by overlaying
the detector information of the simulated main pp̄ collision with the corresponding informa-
tion from random bunch crossings registered with the real DØ detector using a dedicated
zero bias trigger. The zero-bias overlaid simulated event samples undergo the same offline
reconstruction process as used for real data.
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Chapter 5

Event Reconstruction and Object
Identification

The event reconstruction and object identification process translates the digitized event in-
formation from the detector into physics objects corresponding to the final-state particles of
the interactions taking place during a triggered bunch crossing. It gives information about
the particle types as measurements of the particle energies and directions of flight. The de-
tector design is optimized to allow for the identification of electrons, muons, taus, photons,
hadronic jets and, indirectly through the total ET balance measured in the event, neutrinos.
The present analysis relies on the accurate identification of electrons, jets and the primary
interaction vertex, using information from the central tracking system and the calorimeter.

5.1 Tracks

The SMT and CFT (see Sect. 4.2.1) provide information about the position of charged par-
ticles as they passed the various layers of the tracking system. The hits in the tracker corre-
spond to points along the trajectory of flight of the particle, and the accurate reconstruction
of this trajectory is the aim of the tracking algorithm. Due to the solenoidal magnetic field
in the tracking volume, the trajectory of a charged particle in the transverse plane (x, y)
corresponds to a circle. In the transverse plane a track can be parametrized in terms of the
curvature, ρ, the distance of closest approach (DCA) to the beam line, d0, and the azimuthal
angle of the track direction at the point of closest approach to the beam line, φ. Two addi-
tional parameters are needed to describe the track in the three-dimensional space, e.g. the z
coordinate and the polar angle of the track at the point of closest approach to the beam line.
The DØ track reconstruction is divided into two steps. First, pattern recognition techniques
are used to identify track candidates from the hits. Second, the hits of the track candidates
are used as input to a fitting algorithm which extracts the track parameters.

Two different algorithms are used for the initial pattern recognition step. The Histogram-
ming Track Finding (HTF) algorithm assumes that all relevant tracks pass, or nearly pass,
through the beam line, i.e. that d0 ≈ 0. With this assumption a single pair of hits in the
tracking system uniquely defines a track in the transverse plane, characterized by (ρ, φ). A
2-dimensional histogram is filled with the (ρ, φ) coordinates of all pairs of tracker hits. Pairs
of hits lying along the trajectory of the same charged particle share the same (ρ, φ) point,
meaning that peaks in the histogram correspond to plausible track candidates. The HTF
algorithm is based on this basic idea, but contains several modifications to assure a fast
algorithm in the presence of the 104 to 106 hits typically contained in a DØ event.

A second pattern recognition algorithm, the Alternative Algorithm (AA), is also used.
Initial track candidates are identified from three SMT hits, and are kept if the track has a
small DCA, a good χ2 fit to the hits and curvature corresponding to that of a circle with
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radius larger than 30 cm, implying a momentum larger than 180 MeV. Each track candidate
is extrapolated outwards to the next SMT or CFT layer giving a search window where a
new hit is expected. If a hit is found, the track is refitted using this hit in addition to the
original ones. The lack of an expected hit is counted as a missed hit, and the track candidate
is rejected if it has more than 3 missed hits. A second iteration of the algorithm, using three
CFT hits as starting point, is performed to catch tracks containing two or less SMT hits.
To limit the needed computer time by rejecting fake track candidates, CFT-initiated tracks
are required to point towards a vertex candidate (see below) reconstructed using only the
already identified SMT-initiated tracks.

To extract the track parameters, candidates from the HTF and AA algorithms are used
as input for a Kalman algorithm [80] which performs detailed track fits taking into account
effects like the non-uniformity of the magnetic field and the energy loss of charged particles
due to interaction with detector material. The curvature determined by the fit corresponds
to a measurement of the track momentum.

5.2 Vertex Reconstruction

A track points towards the point in space, the vertex, where the charged particle was created.
Knowledge of the tracks of two or more particles arising from the same vertex allows the
coordinate of the vertex to be determined, which is the task of vertexing algorithms. Each
pp̄ scattering taking place during a bunch crossing gives rise to an interaction vertex. In ad-
dition, long-lived particles such as b-hadrons also give rise to vertices, refered to as secondary
vertices. The vertex coordinates of the pp̄ scatterings are needed to determine the transverse
components of energy deposits in the calorimeter, and to associate objects to different vertices
based on the direction of tracks. In DØ, the vertices in each event are determined using an
iterative, reweighted Kalman fitting algorithm [81] following Ref. [82]. For the first iteration,
all tracks are assigned a weight of unity. For iteration number n, tracks are down-weighted
for the determination of each vertex based on their DCA to the vertex in question, with the
vertex coordinates being those determined in iteration number n− 1. The motivation for the
reweighting is to reduce the impact of mis-associated and mis-measured tracks on the final
vertices.

Having determined a list of vertices, the next task is to select the vertex associated with
the main interation of the bunch crossing, the primary vertex. The primary vertex is distin-
guished from vertices arising from additional pile-up pp̄ interactions using a likelihood method
exploiting the higher average track pT from the primary vertex. For each track associated
with a vertex the probability that the track was created in a pile-up interaction is evaluated
based on the track pT distribution of pile-up interactions. The track pT distribution of pile-
up interactions was extracted from a data sample registred using a so-called minimum-bias
trigger, i.e. a trigger which requires only a small amount of activity in the detector. For
each reconstructed vertex, the probability that the vertex arised from a pile-up interaction
is defined as the product of the probabilities of the single tracks associated with the vertex.
For each event, the vertex which has the lowest probability for having arised from a pile-up
interaction is selected as the primary interaction vertex.
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5.3 Calorimeter Zero Suppression

Due to electronic noise as well as uranium decays, calorimeter cells will register a nonzero
energy in the absence of any signal. The identification of physics objects can be significantly
simplified by rejecting all cells which have less energy than N times the noise-only energy
RMS value (zero suppression). In DØ, only cells satisfying at least one of the two following
criteria are used for object identification:

• Ecell > 4 · RMSnoise, or

• Ecell > 2 · RMSnoise, and the cell is a neighbor of a cell satisfying Ecell > 4 · RMSnoise.

This algorithm is referred to as T42 and is documented in Ref. [83]. In addition to reducing
the complexity of the calorimeter object reconstruction process, T42 has been found to give a
6% better jet energy resolution than achieved using a simple 2.5 · RMSnoise zero suppression
threshold [84].

5.4 Electrons

The identification of electron candidates starts with running a simple ∆R = 0.2 cone al-
gorithm using calorimeter towers based on the four EM and the first hadronic calorimeter
layers as input objects. Towers satisfying ET > 0.5 GeV are used as seeds. Identified EM
candidates are divided in two categories based on whether or not a track candidate is pointing
towards the calorimeter tower (track match).

The electron identification process separates electrons from hadrons and photons using
detailed information from the calorimeter and the central tracking system (see Chapt. 4).
Compared with hadronic jets, electrons are characterized by a narrower lateral shape of the
calorimeter shower. The shower shape of electrons is nearly identical with that of photons,
but the two can be distinguished using tracking information: an electron calorimeter object
normally has one and only one track match, whereas a photon has zero, or, in the case of a
γ → e+e− conversion, two track matches. A single π0 particle, with π0 → γγ, has a similar
calorimeter deposit as electrons and photons, and if a π0 overlaps in direction of flight with a
charged hadron, this can result in a fake electron candidate. However, in contrast with a real
electron, the fake candidate usually has a track momentum which differs significantly from the
calorimeter energy, corresponding to Ecalo

T /ptrack
T deviating from unity. In case Ecalo

T /ptrack
T

is by chance close to unity the charged hadron will normally lead to a significant fraction of
the electron candidate energy being reconstructed in the hadronic calorimeter, in contrast to
what is the case for real electrons.

5.4.1 Electron Identification

The electron preselection requires an EM candidate satisfying the isolation criterion

iso =
ER=0.4

EM+HAD − ER=0.2
EM

ER=0.2
EM

< 0.2, (5.1)

where ER=0.4
EM+HAD (ER=0.2

EM ) is the energy in the entire calorimeter (EM calorimeter) in a
cone of R = 0.4 (R = 0.2) around the center of the electron candidate. Additionally, the

49



Chapter 5 Event Reconstruction and Object Identification

candidate’s electromagnetic fraction,

EMfrac = ER=0.2
EM /ER=0.2

EM+HAD, (5.2)

must be larger than 0.9. The main electron selection uses a likelihood discriminant [85]
utilizing seven calorimeter and tracking variables. The likelihood is only defined for electron
candidates which have a track match. The input variables are:

1. distance of closest approach to the primary vertex, defined in the transverse plane;

2. number of tracks with pT > 0.5 GeV in a cone of R = 0.05 around the electron track;

3. pT sum of all tracks in a cone of R = 0.4 around the electron track;

4. electromagnetic energy fraction, EMfrac;

5. χ2-probability for the match between the track and the calorimeter cluster;

6. ratio Ecalo
T /ptrack

T ;

7. the HMxmatrix, Hmx7,

where Hmx7 is a χ2 discriminant used to suppress the contribution from fake candidates
arising from hadrons. It depends on seven calorimeter variables: the total EM energy, the
vertex z position, the shower width in φ and the energy fraction contained in each of the
four EM layers of the calorimeter. The distributions of four of the likelihood input variables
for signal and background samples are given in Fig. 5.1. The resulting distributions of the
likelihood discriminant for electron candidates in the central and endcap calorimeters are
given in Fig. 5.2.

5.4.2 Electron Identification Efficiency

The analysis presesented in this thesis relies on the identification (ID) efficiency being iden-
tical for simulation and data. That this is the case can be verified by measuring the ID
efficiency separately in data and simulation and then correcting the simulation for any ob-
served discrepancies. To measure the electron ID efficiency one must

1. know the direction of flight of a final-state electron, and

2. check if an electron candidate was identified in the corresponding part of the detector.

A way of achieving 1) is the tag-and-probe method. This requires the identification of a data
sample where the presence and kinematics of an object can be established using only infor-
mation which is uncorrelated with the selection criteria whose efficiency is to be measured.
For electrons, this is done using a Z/γ∗ → ee sample. One electron, the tag, is identified
using tight ID criteria to reduce the amount of background. The tag electron is required to
have fired a trigger to avoid any potential trigger bias. The presence and kinematics of the
second electron, the probe, is established by requiring a track candidate which satisfies that

• the track points to the primary vertex,

• the track is isolated from all other tracks,
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Figure 5.1: Distributions of four electron likelihood input variables for signal (shaded) and
background (dashed) [86]. The background sample consists of dijet events where
a jet is reconstructed as an electron candidate. Electron candidates can have
EMfrac > 1.0 due to the possibility of a negative hadronic energy arising from
noise.
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Figure 5.2: Distributions of the electron likelihood discriminant for electrons (shaded) and
jets (dashed) using the same samples as for Fig. 5.1 for |ηdet| < 1.1 (central
calorimeter) and 1.5 < |ηdet| < 2.5 (endcap calorimeter) [86].

• the track is back-to-back in φ with the tag electron, and

• the invariant mass of the tag and the track is ≈ MZ .

It is then tested if

a) an electron candidate is found in the direction of the track,
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and if

b) this candidate satisfies the selection criteria whose efficiency is to be determined.

The probability that a) is satisfied defines the preselection efficiency, or the reconstruction
efficiency. The conditional probability that b) is satisfied, given a), is referred to as the
post-preselection ID efficiency, or just the ID efficiency. Each event contains two electrons,
and to avoid a bias both electrons in every event are treated as a potential tag electron. The
tag-and-probe method is designed to measure the electron ID efficiency using only detector
information. However, the preselection of the tag-and-probe measurement might bias the
measurement. The size of this bias was evaluated using a simulated event sample. The
efficiency measured in the simulated sample using the tag-and-probe method was compared
with the efficiency defined using generated electrons as probe, i.e. the true efficiency, and the
difference was found to be negligible [87].

In the present analysis reconstructed electrons are defined by requiring the standard pre-
selection in addition to an electron likelihood value larger than 0.2 and pT > 15 GeV. The
corresponding preselection and ID efficiencies for data and simulation are availiable from the
DØ EM ID group [88] and are shown as a function of ηdet in Fig. 5.3.

Figure 5.3: Preselection (upper left) and ID (lower left) efficiency of electron selection crite-
ria, as a function of ηdet, for data and simulation. The correction factors to be
applied to simulation to correct for the discrepancies are given for the preselection
efficiency (upper right) and ID efficiency (lower right). (Adopted from Ref. [89].)
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5.4.3 Electron Energy Scale and Resolution

The task of the electron energy scale calibration is to translate the calorimeter signals into
electron energies in units of GeV. The true electron energy, Etrue, can be related to the
digitalized calorimeter signal in each of the five calorimeter layers, Ai, through

Emeasured = α ·
5
∑

i=1

βjAi + δ

= α · Ereco + δ, (5.3)

where βj is the relative response correction of the five layers with β3 ≡ 1.0, α is the overall
calibration factor, δ is an energy offset correction and Ereco ≡ ∑5

i=1 βjAi. A non-zero δ
can arise from energy loss in material before the calorimeter, noise, energy from additional
pp̄ interaction and from signal being lost due to zero suppression. The absence of O(AN

i )
(N > 1) terms in Eq. (5.3) is a good approximation for electron energies above 10 GeV [90].
In Run I, an estimate of the EM scale was determined from test-beam measurements, giving
a reconstructed Z boson mass of MZ = 87.11± 0.18 GeV [91]. To achieve a better precision,
the world-average value MZ = 91.1876± 0.0021 GeV [1] is taken as input, with J/Ψ → e+e−

and π0 → γγ having been used for cross-checks [90, 92]. Assuming the validity of Eq. (5.3),
the EM energy scale can then be calibrated to a high level precision. The parameters α, βj

and δ can be determined such that the reconstructed dilepton mass, Mee, is equal to MZ [93].
However, this technique ignores higher-order QED corrections (Z → eeγ) which invalidates
the assumption that Mll = MZ if ∆R(e, γ) is larger than the cone size used for defining
reconstructed electron candidates, i.e. ∆R > 0.2 for DØ. To include the impact of higher-
order QED corrections, a full event generator is used, with MPDG

Z as input. A parametrized
detector description, depending on the unknown α and β as well as the energy resolution, is
used to account for the impact of the detector on the Mee spectrum [92, 93, 94]. Assuming
a reasonable value for the energy resolution, a likelihood method is used to determine the α,
βj and δ values which give the best agreement between the simulated and the reconstructed
Mee distributions. In a second step α, βj and δ are kept fixed, and the energy resolution is
determined in the fit. The resulting electron energy scale has an uncertainty less than 0.5%
[93].

5.5 Jets

Jet candidates are reconstructed using the DØ Run II Mid-Point Cone Jet algorithm (see
Sect. 3.7.1), using calorimeter towers after zero suppression as input objects. Jet candidates
are rejected if the reconstructed pT is less than 6 GeV before jet energy scale corrections
are applied (see below). This selection criterion is referred to below as the jet reconstruc-
tion threshold. Fake jet candidates arise mainly from noise in the calorimeter system, from
electrons and from photons.

5.5.1 Jet Identification

The jet ID criterion used to reject candidates arising from electrons and photons is

• EMfrac < 0.95.
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ID criteria used to remove jet candidates arising from noise are

• 0.05 < EMfrac (require confirmation from the EM calorimeter which is less sensitive
to noise than the hadronic calorimeter);

• the fraction of the jet energy registered in the coarse hadronic layer should be below
40% (this layer is particularly sensitive to noise);

• the amount of energy detected by the L1 jet trigger must exceed either 80 GeV or
50% of the reconstructed jet energy (the trigger is an independent cross-check since its
electronics is separate from the main read-out system).

The ID criteria given here are used for most detector regions. In some particular detector
regions containing atypical instrumentation, like in the gap region between the CC and EC
calorimeter, slightly modified criteria are used (see Ref. [95] for details).

5.5.2 Jet Identification Efficiency

The probability that a true jet gives rise to a jet candidate defines the jet reconstruction
efficiency, ǫjet

reco. If a jet candidate is found, the probability that it passes the jet ID criteria
defines the jet ID efficiency, ǫjet

ID. At low pT , defined as below approximately 40 GeV, the

measurement of ǫjet
reco is complicated due to the impact of the jet reconstruction threshold

and the relatively large pT resolution for jets: for example, a 20 GeV jet with a low π0

content in the calorimeter shower (see Sect. 4.2.2) might fail the threshold cut. This cross-
talk between reconstruction efficiency, reconstruction threshold and pT resolution can be
accounted for using the so-called SSR method (see Sect. 5.5.4). At large values of pT , where
the reconstruction threshold does not play a role, ǫjet

reco times ǫjet
ID reaches a plateau value which

is approximately independent of pT , and this plateau efficiency is measured using a tag-and-
probe method [96, 97]. The presence and direction of flight of a jet is established by selecting
a good jet or γ as tag. The probe jet is made up of one or more tracks with relatively high
pT which satisfy ∆φ(tag,tracks) ≈ π. This selection is motivated by assuming a leading-order
picture where the tag and the probe are back-to-back and have equal pT . The validity of
the leading-order picture is improved by rejecting events containing additional jets or a large
amount of missing transverse energy. The jet reconstruction efficiency is measured as the
probability that a jet candidate is found in the direction of the probe. Using a dijet sample,
requiring a good jet as probe, gives a reconstruction efficiency in data which, as shown in
Fig. 5.4, is ∼ 100% above 40 GeV, while dropping down to ∼ 30% at 15 GeV.

The jet ID efficiency corresponds to the probability that a reconstructed jet candidate
passes the ID criteria given in Sect. 5.5.1, and it is found to be ∼ 95% at 20 GeV, increasing
to ∼ 99% above 70 GeV (see Fig. 5.4). Simulation and data are in good agreement for ǫjet

ID over

the whole pT range, and for ǫjet
reco above 40 GeV. Residual disagreements on the 1 − 2% level

are taken into account in the analysis by rejecting jets with a probability ǫdata
reco/ID/ǫsim

reco/ID.

The disagreements seen in ǫjet
reco< 40 GeV are corrected for as part of the SSR method (see

below). As a cross-check, the tag-and-probe method is also applied in a γ+jet sample,
yielding efficiencies which are compatible with the dijet results within uncertainties. The
γ+jet analysis has the advantage of a more precise measurement of the pT of the probe, but
it suffers from lower statistics and higher backgrounds.
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Figure 5.4: Jet reconstruction (left) and ID (right) efficiency measured in data and simulation
using dijet events where the track(s) of the probe satisfies 0.0 < |ηdet| < 0.4 (upper
row) or 1.2 < |ηdet| < 1.6 (upper row) (from Ref. [96]). The efficiencies are plotted
as a function of the pT of the tagged jet, as estimated from the pT of the probe
jet. No strong dependency on ηdet was found.

5.5.3 Jet Energy Scale from γ+jet production

Jet energy scale (JES) corrections are applied to calibrate the reconstructed jet energies to,
on average, be equal to the energy of the jet at the particle level. In DØ, the particle level
is defined as the set of stable final-state particles of the interaction. Particles arising from
interactions between the pp̄ remnants (underlying event) from the hard scattering are included
in the definition, whereas particles from additional pp̄ interactions are not. The calorimeter
energy associated with a reconstructed jet deviates from the particle-level jet energy due a
number of effects which can be divided into three main categories [98]:

• The jet energy response, R, of the calorimeter is less than 1, mainly due to the lower
energy response of the calorimeter to hadrons than to electromagnetic particles. Addi-
tional reasons are the presence of uninstrumented regions between modules as well as
the effect of the zero suppression algorithm. The response is measured using the energy
balance in γ+jet events. More specifically, the missing transverse energy component
parallel to the axis defined by the direction of flight of the photon is assumed xxxxx
to arise from the calorimeter response. A veto is applied on sub-leading jets, and the
γ and the jet are required to be back-to-back in the transverse plane. The response is
found to be in the range 0.5 − 0.8, depending on pjet

T (see Fig. 5.5). This correction is
the largest part of the JES corrections.

• The reconstructed jet energy receives a non-negligible contribution from other sources
than the pp̄ collision which produces the hard scattering. The resulting energy offset,
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Eoffset, arises from additional pp̄ interactions from the same bunch crossing as the hard
interaction, from noise in the calorimeter electronics, from decays of uranium in the
calorimeter absorber plates and from pile-up of energy from previous bunch crossings.
The size of Eoffset is determined as a function of the number of reconstructed pp̄ inter-
action vertices using data events from random bunch-crossings (zero bias events). The
offset energies in events with 1-5 reconstructed primary vertices are shown in Fig. 5.5.

• Particles which contribute to the jet at particle level might not contribute to the
detector-level jet, and the other way around. This can happen for instance if the parti-
cle fails to reach the calorimeter due to interactions with dead material or the magnetic
field, or if energy from particles at the edge of the particle-level jet is be deposited in
calorimeter cells not belonging to the reconstructed jet. The net result of these effects
referred to as detector showering, and is accounted for by a correction factor, Fshower,
shown in Fig. 5.5. The shower correction is extracted from fitting the radial jet energy
density profile in data, using templates derived in a simulated event sample by match-
ing generated particles with energy deposits in the calorimeter, performed separately
for particles included, and not included, in the particle-level jet.

In terms of the above-mentioned correction factors, the reconstructed, JES-corrected jet
energy, Ecorr, is defined as

Ecorr ≡
Ecal − Eoffset

R × Fshower
(5.4)

To account for an insufficient accuracy in the simulation of the interaction between jets
and the detector, the JES corrections are derived independently in data and simulation.
Examples of the total JES correction factor for data, with uncertainties, are given in Fig. 5.6
as a function energy and ηdet.

5.5.4 Jet Energy Scale and Resolution from Z+jet production

The use of Z+jet events to calibrate jet energies has a three-fold motivation. First, in contrast
to the γ+jet and dijet samples, Z+jet offers a clean sample and a well-measured pT of the
tag object also at low pT . Second, jets initiated by quarks and gluons have different response
in the calorimeter due to the higher particle multiplicity in gluon-initiated jets. The fractions
of quark and gluon-initiated jets are different in Z+jet events than in γ+jet events, and
consequently jets in the two samples have a different average response. Third, as mentioned
in Sect. 5.5.2, low-pT jet samples are influenced by the jet reconstruction threshold and the
jet energy resolution: low-pT jets are only identified if their energy fluctuated upwards. To
account for this, a method which simultaneously measures the energy scale and resolution has
been devised, referred to as the Shift, Smear and Remove (SSR) method [99]. This method
is defined after the γ+jet-derived JES corrections have been applied. The SSR method relies
on the kinematic balance in Z+jet events where the Z and the jet are back-to-back in the
transverse plane. By vetoing against softer jets it is established that pZ

T ∼ pjet
T on the particle

level. The observable

∆S =
pjet

T − pZ
T

pZ
T

(5.5)

is studied in bins of pZ
T , see Figs. 5.7 and 5.8. The ∆S spectrum is described by a Gaussian

convoluted with an error function. The fit of the convoluted function to the ∆S distribution
extracts the following information:
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Figure 5.5: The three main steps of the DØ JES correction, as measured in data: the energy

response for |ηjet
det| < 0.4 as a function of the true jet energy E′ estimated from

the photon energy (top, left); the energy offset as a function of ηdet for events
with and the number of reconstructed interactions vertices (top, right); and the
detector showering correction as function of the estimated true jet energy and
pseudorapidity (bottom) [98]. For the energy offset, separate curves are shown as
function of the number of reconstructed interaction vertices. For zero vertices the
reconstructed energy is assumed to arise from noise and pile-up from prevrious
bunch crossings (labelled NP). For events with n interaction vertices the curve is
labelled NP+nMI, with MI meaning multiple pp̄ interactions.
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Figure 5.6: The total jet energy scale correction for data (left) and the corresponding un-
certainties (right) shown as a function of the uncorrected jet energy for ηdet = 0
(top) and as a function of ηdet for Euncorrected

jet = 50 GeV (bottom) [98].

• the pZ
T value corresponding to the peak of the Gaussian, <∆S>, measures the JES;

• the width of the Gaussian, σ∆S, measures the jet energy resolution (JER);

• the turn-on pT value where of the error function measures the pjet
T value which corre-

sponds to the Euncorrected
jet = 6 GeV reconstruction threshold.

The fits are performed independently for data and simulation. The <∆S> and σ∆S dis-
tributions are given as a function of pZ

T in Fig. 5.7. For data-events with pZ
T = 20 GeV,

the jet has an average particle-level pT of ∼ 15.4 GeV (<∆S>≈ −0.3), against 16.7 GeV
in simulation (<∆S>≈ −0.2). This deviation probes the difference in jet energy response
between data and simulation, and the reconstructed jet energies in simulation are shifted so
that agreement with data is seen for the <∆S> distribution. The σ∆S in data is larger than
in simulation, and it is assumed that this is due to differences between the GEANT-based
detector simulation and the real DØ detector. For instance, the superconducting solenoidal
coil structure is described in the simulation as a homogeneous, φ-symmetric cylinder [72].
In reality, some particles pass through the solenoidal system without intersecting the coil,
i.e. passing through less material than in the simulation before reaching the calorimeter. In
contrast, those particle which pass through the coil are exposed to significantly more material
than in the simulation. This contributes to explain why the energy resolution is larger in
data than in simulation. To bring the σ∆S distribution in simulation into agreement with
data, reconstructed jet energies in simulation are smeared with a Gaussian function with a
width given as σ2

smear = σ2
∆S,data − σ2

∆S,sim.
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Figure 5.7: The ∆S distribution for 18 < pγ
T < 23 GeV (left) and for 70 < pγ

T < 75 GeV
(right) as reconsstructed from γ+jet events in data, fitted with the convolution
of a Gaussian and an error function (continuous line) [100]. The Gaussian part of
the fit is given as a dotted line. These plots are shown for γ+jet production since
the corresponding plots for Z/γ∗ production were not available. The qualitative
properties of the ∆S distribution are identical for Z/γ∗+jet and γ+jet production.
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Chapter 6

Event Samples from Data and Simulation

In this Chapter, a description of the data and simulated event samples which are used in the
analysis presented in this thesis is given.

6.1 Data Sample

The analyzed data sample was recorded by the DØ experiment between October 2002 and
February 2006 during Run II of the Tevatron accelerator. In order to reduce the number of
events which needs to be taken into account in each DØ analysis, sub-samples (skims) of the
full data set which satisfy very loose selection criteria have been compiled by the Common
Sample Group [101]. In this analysis a skim containing all events where at least two EM
calorimeter objects satisfying pT > 12 GeV was used.

6.1.1 Data Quality

The analysis presented in this thesis relies on the accurate identification of electrons and jets
and a precise measurement of their kinematic properties. To guarantee that the detector was
operating properly during the time period when the analyzed data sample was registered, so-
called data quality selection criteria are employed. In addition to rejecting events where the
tracking, calorimeter or luminosity measurement systems were malfunctioning, jet candidates
which contain specific calorimeter cells known to have a high level of noise are discarded.

6.1.2 Integrated Luminosity

The integrated luminosity has been determined from the rate of inelastic pp̄ interactions
measured using the luminosity monitoring system (see Sect. 4.2.4), yielding

L =

∫

L dt = 1.04 fb−1, (6.1)

with a relative uncertainty of 6.1% [102].

6.2 Simulated Event Samples

Simulated event samples are first used for to comparing the predictions of the pythia v6.314
and sherpa 1.0.6 event generator models with kinematic distributions reconstructed in the
data sample in Chapter 7. Thereafter, event samples simulated using pythia v6.314 and
alpgen v2.05 + pythia v6.325 are used to estimate background contributions and the impact
of the detector on the reconstructed kinematic distributions in data, thereby correcting the
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distributions to the particle level. The configuration parameters of pythia were set according
to Tune A [51]. Each event was passed through a GEANT-based [77] simulation of the DØ
detector [78]. Whereas the pythia and alpgen+pythia samples were provided by the
Common Samples Group, the sherpa sample was generated specifically for these studies.
An overview of the simulated event samples used in the studies and measurements presented
in chapters 7 and 9 is given in Table 6.1. The alpgen+pythia samples were generated in six
different bins depending on the number of partons included in the matrix-element calculation.
The quoted cross section for each multiplicity bin is used when merging the samples to build
a jet-inclusive sample. For sherpa, up to three partons were included in the matrix-element
calculations. All Z/γ∗ → e+e− samples were generated with the following requirement1:
60 < MZ/γ∗ < 130 GeV.

Process Generator σxBR Events

Z/γ∗ → e+e− + 0 partons alpgen+pythia 139.0 pb 2.23M
Z/γ∗ → e+e− + 1 parton alpgen+pythia 42.0 pb 808k
Z/γ∗ → e+e− + 2 partons alpgen+pythia 10.2 pb 400k
Z/γ∗ → e+e− + 3 partons alpgen+pythia 2.4 pb 202k
Z/γ∗ → e+e− + 4 partons alpgen+pythia 0.49 pb 100k
Z/γ∗ → e+e− + 5 partons alpgen+pythia 0.12 pb 50k
Z/γ∗ → e+e− + ≤ 3 partons sherpa 3M
Z/γ∗ → e+e− pythia 1.2M

Z/γ∗ → τ+τ−+ 0 partons alpgen+pythia 139.0 pb 1.4M
Z/γ∗ → τ+τ−+ 1 parton alpgen+pythia 42.0 pb 400k
Z/γ∗ → τ+τ−+ 2 partons alpgen+pythia 10.2 pb 200k
Z/γ∗ → τ+τ−+ 3 partons alpgen+pythia 2.4 pb 200k
Z/γ∗ → τ+τ− pythia 1.2M
W → eν pythia 4.2M
WW pythia 200k
tt̄ pythia 1.1M

Table 6.1: Information on the simulated event samples used in chapters 7 and 9.

1The contribution to the selected event samples in the presented analysis stemming from other ranges in
MZ/γ∗ was found to be negligible.
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Chapter 7

Detector-Level Studies of Z/γ∗+jets
production

An accurate understanding of the associated production of Z/γ∗ and jets is of great im-
portance to hadron-collider experiments. In addition to representing an important test of
perturbative QCD, this channel is a major source of background events to searches for new
phenomena, like SUSY and Higgs production, as well as to studies of known, rare Standard
Model processes, e.g. di-boson or single-top production. As described in Chapter 3, a wide
range of algorithms for describing QCD radiation has become availiable over the last years.
Several different algorithms for consistently combining matrix-element and parton-shower
descriptions of QCD radiation have been presented and implemented in event generator
codes, e.g. sherpa and alpgen+pythia, yielding predictions on the particle-level suitable
for a detailed detector simulation. Although these recent advances are not applicable only for
Z/γ∗+jets production, this channel offers the advantage of a large cross section and a clean ex-
perimental signature. Experimental measurements of jet-related properties in the Z/γ∗+jets
channel therefore offers an ideal framework for validating, comparing and improving different
event generator codes. In this Chapter the properties of jets in pp̄ →Z/γ∗(→ e+e−)+jets
production are reconstructed in data and compared with the predictions of sherpa and
pythia.

7.1 Event Selection

The event selection starts by requiring two electron candidates of opposite charge, both having
a pT above 25 GeV and being reconstructed within the pseudorapidity range |ηdet| < 1.1 or
1.5 < |ηdet| < 2.5. At least one of the electrons is required to be reconstructed in the
central part of the detector (|η| < 1.1). Both electron candidates must satisfy a likelihood
criterion optimized for separating real electron from backgrounds mainly arising from jet
production via QCD processes (see Sect. 5.4.1). The di-electron invarint mass (Mee) must
satisfy 70 < Mee < 110 GeV, and the event must have been triggered by a single-electron or
di-electron trigger. It is assumed that the trigger efficiency is 100%, and also that all events
in the selected data sample correspond to true Z/γ∗ → e+e− events, i.e. that there is zero
background1. Jets were defined using the DØ Run II Mid-Point algorithm (see Sect. 3.7.1)
and the jet identification criteria given in Sect. 5.5. Only jets satisfying pT > 15 GeV and
|ηdet| < 2.5. In addition, each jet must have a separation in ∆R to all identified electron
candidates larger than 0.5.

A total of 50,440 data events pass the event selection. Of these, 40.437/7.976/1.629/332/52
events have 0/1/2/3/4 reconstructed jets with pjet

T above 15 GeV. The properties of the se-

1These assumptions will be justified in more detailed studies presented Chapt. 9.
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Figure 7.1: The identification correction weight attached to each electron in the simulated
sample, as a function of ηdet [88].

lected a Z/γ∗ → e+e− event sample is compared to two event samples which were generated
using the pythia and sherpa event generators and passed through a GEANT-based simu-
lation of the DØ detector (see Sect. 6.2).

7.2 Correcting the Performance of the Simulated Detector

The properties of reconstructed distributions in simulation are determined by the physics
model of the event generator and of the performance of the simulated detector. The purpose
of this study is to use DØ data to test and validate the physics models of sherpa, using
pythia as a reference. To achieve this, the performance of the simulated detector must
be identical to that of the real detector within the quoted uncertainties. This is done by
measuring the electron and jet identification efficiencies, energy scales and energy resolutions
in data and simulation, and then by modifying the simulated event sample to account for
any discrepancies.

As noted in Sect. 5.4.2, the electron identification efficiency in simulation is higher than in
data. To compensate for this, each simulated event which passes the event selection is given
a weight

ǫcorr(ηdet,1) · ǫcorr(ηdet,2), (7.1)

where ηdet,1 and ηdet,2 are the ηdet-values of the two electrons and ǫcorr is the ratio of the
electron identification efficiency measured in the sample and the simulation sample using the
tag-and-probe method, as a function of ηdet, as given in Fig. 7.1.

The reconstructed jet energies were calibrated using jet energy scale corrections derived in
a γ+jet sample [103]. To measure the differences in jet energy scale and resolution between
data and simulation the sub-sample of the Z/γ∗ → e+e− sample containing one and only one
jet and satisfying ∆φ(di-electron, jet) > 2.9 was selected (see Sect. 5.5.4). The mean and
RMS of the distribution of

∆S =
pjet

T − pZ
T

pjet
T

(7.2)
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Figure 7.2: The measured jet energy resolution in data and simulation, fitted with Eq. (7.3).
The difference in quadrature gives the width (σ(smear)) of the Gaussian function
with which reconstructed jet energies in simulation were smeared to remove the
discrepancy.

were studied in bins of pZ
T . The mean, which is sensitive to the jet energy scale, in data

and simulation was found to be compatible within uncertainties, indicating that the applied
jet energy scale version is valid within uncertainties also for Z/γ∗+jet events. The RMS
distribution in simulation was found to be smaller than in data, see Fig. 7.2. The two RMS
distributions were fitted with the standard expression for relative energy resolution,

(

∆pT

pT

)

=

√

A2 +
B2

pT
+

C2

p2
T

. (7.3)

The first term, A, is independent of pT and reflects inhomogenities in the calorimeter, whereas
the second term (B) arises from the the statistical uncertainty in the calorimeter energy
sampling. Noise in the calorimeter and the read-out system is described by the third term
(C). As can be seen in Fig. 7.2, the jet energy resolution is smaller in simulation than in data.
To correct for this, reconstructed jet energies in the simulated event sample were smeared

using a Gaussian function with a width given by σcorr =
√

(fJER
data (pT ))2 − (fJER

sim (pT ))2.

In Fig. 7.3 the invariant-mass distributions (Mee) in pythia and sherpa are compared
with data. The pythia spectrum is shifted towards higher values of Mee with respect to
data. The same tendency is seen for sherpa, but the shift is slightly larger than for pythia.
These discrepancies are in contrast to the fact that the electron energy scale is deduced
by requiring the Mee distribution in simulation to match that in data (see Sect. 5.4.3). In
the case of pythia, the discrepancies can be traced back to the simulation of the energy of
electrons which deposite their energy close to the boundary between two calorimeter towers2,
referred to as non-fiducial electrons. By selecting only events where both electrons deposited
their energy well separated from from a φ-crack, referred to as fiducial electrons, agreement
between pythia and data is seen, as illustrated in Fig. 7.4. Since the azimuthal angles of
the electrons do not correlate with any of the observables of interest, the mismatch between

2Regions referred to as φ-cracks, see Sect. 4.2.2
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Figure 7.3: The distribution of the di-electron invariant mass (M(e, e)) in data compared
with in pythia (left) and with sherpa (right).
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Figure 7.4: The distribution of the di-electron invariant mass in data compared with in
pythia for events where both electrons passed through a well-instrumeted (fidu-
cial) region of the detector (left). The same distribution, but for events where
one of the electrons passed through a boundary (non-fiducial) region between two
calorimeter towers (right).
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pythia sample and for the pythia sub-sample of events where no e → eγ split-
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tribution (pT (e, e)) for the two pythia samples (right).

data and simulation arising from the inclusion of non-fiducial electrons in the analysis is not
expected to influence the analysis significantly. The deviations between the Mee spectra in
sherpa and pythia reflect differences in the simulation of higher-order QED corrections to
the boson decay. In pythia, the boson is first allowd to decay into an e+e− pair, then a
QED parton-shower algorithm is applied to simulate e → eγ splittings (QED FSR). The
sherpa version used for this part of the analysis did not model QED corrections to the
boson decay, and as a result the electrons in the sherpa sample have a higher average pT

and Mee than in pythia, as seen in Fig. 7.5. To verify that the difference between the two
simulations is entirely due to QED FSR the pythia sub-sample consisting of events where no
e → eγ splitting took place was selected, and as seen in Fig. 7.5 (left), the Mee distribution of
this pythia sub-sample reproduces the sherpa distribution3. The decay mode of the Z/γ∗

is expected to be uncorrelated with the jet activity in the event. To test whether the pZ
T

distribution in the sherpa sample is influenced by the lack of a QED FSR model the pZ
T

distributions in the inclusive pythia sample and the sub-sample without e → eγ splittings
were compared, and agreement was seen within statistical uncertainties (Fig. 7.5(right)).

7.3 Detector-level Comparisons: Data, pythia and sherpa

With agreement between the simulated detector and the real detector any remaining differ-
ences between data and simulation must be due to the physics model of the event generator.
In Fig. 7.6 the pT distribution of the di-electron system measured in data is shown and com-
pared to the predictions of pythia (left) and sherpa (right). The indicated ranges for each
generator reflect the predicted value and the statistical uncertainty of the simulated event
sample. In the lower part of each plot the ratio of the number of events in data to that
predicted by the simulation is given. An upward slope, corresponding to a lack of of events
containing a di-electron system with a large pT value, is found in the pythia event sample.
This indicates a lack of events containing a high-pT jet. For sherpa, the agreement in the

3Initiated by these studies a model for simulating higher-order QED corrections was added to later versions
of sherpa.
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Figure 7.6: The distribution of the transverse momentum of the Z boson (pT (Z)) in data and

pythia (left), and in data and sherpa (right). The lower plots show the ratio of
the distribution in data to in the simulation. The red lines indicate a factor two
up and down.

low pT range is reasonable, but the simulated sample contains more events with a large value
of pT than seen in data.

The jet multiplicities observed in data and predicted by the two event generator models are
given in Table 7.1. The simulated event samples were normalized to the total number of events
observed in data, with no separate normalization is performed for the various jet multiplicity
bins. The sherpa prediction is in good agreement with the jet multiplicities observed in
data. In contrast, pythia show deviations which increase with the jet multiplicity. However,

Table 7.1: Number of events for different jet multiplicities measured in data compared with
the predictions of pythia and sherpa.

Sample Inclusive 0-jet 1-jet 2-jet 3-jet 4-jet

Data 50417 40624 7877 1552 306 52
sherpa 50417 39746 8410 1842 335 58
pythia 50417 41271 7604 1324 193 23

as seen in Fig. 7.7, the predictions of both event generators generators are in agreement with
data within the large systematic uncertainties arising from low pT jets, which dominate the
distributions. The uncertainty for the ratio between data and each simulated prediction is
evaluated treating the jet energy scale error of data and simulation as uncorrelated. Given
that data and simulation share common sources of uncertainty, this is a conservative estimate.

The differential cross section dσ/dpT for the leading jet4 (Fig. 7.8), is consistent with the
indications from the pT (Z) spectra, with a positive slope observed in the ratio for the pythia

4The jets are ordered in terms of decreasing pjet
T .
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Figure 7.7: The jet-multiplicity distribution in data and pythia (left), and in data and
sherpa (right). The lower plots show the ratio of the distribution in data to
in the simulation. The red lines indicate a factor two up and down.

prediction. The slope is found to be larger for the second and third leading jets (Figs. 7.9 and
7.10). For example, a factor of 5 more events containing at third leading jet with pT≈ 50 GeV
is seen in data than is predicted by pythia. The sherpa prediction for the pT of the leading
jet, Fig. 7.8(right), is consistent with data within the systematic uncertainties in most bins.
The largest deviations, apart from the highest pT bin where statistics is small, are found at
around 80 GeV, where sherpa predicts a factor 1.3 more jets than seen in data. The pT

spectra for the second and third leading jets, Figs. 7.9 and 7.10, show comparable level of
agreement between sherpa and data as for the leading jet. The largest deviations for both
the second and third leading jets are seen at around 80 GeV where sherpa predicts a factor
1.7 more jets than seen in data.

Both event generators offer a good description of the difference in pseudorapidity between
the two leading jets, ∆η(jet, jet), evaluated in in events with two or more jets, as seen in Fig.
7.11. The distributions for the corresponding difference in the azimuthal angle, ∆φ(jet, jet),
are shown in Fig. 7.12. sherpa gives a good description of data, and ratio of sherpa to data
agrees well with unity within the uncertainties. Also the pythia prediction for the shape of
∆φ(jet, jet) distribution agrees well with data except at ∆φ = π where a significant peak is
seen for the pythia prediction, which is not observed in data. As for sherpa, the overall
normalization agrees with data.

An interesting class of events are those with three jets satisfying

|η1 − η2| > 2.0 (7.4)

and

η1 < η3 < η2 or η2 < η3 < η1 (7.5)

where ηi is η of the ith leading jet in the event. The motivation for studying these events is the
similarity to the vector boson fusion production channel of the Higgs boson. At parton-level
this channel is characterized by one outgoing quark in each forward direction and a Higgs
particle decaying in the central part of the detector. Due to the Higgs being color neutral, a
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Figure 7.8: The pT distribution of the leading jet in data and pythia (left), and in data and
sherpa (right). The lower plots show the ratio of the distribution in data to in
the simulation. The red lines indicate a factor two up and down.

low level of QCD activity in the central detector region is expected. A veto on the jet activity
in the central part of the detector will be a powerful tool to suppress the large tt̄ background,
but such a veto can only be applied if its efficiency is known for all contributing processes,
and this requires an accurate modelling of the associated production of QCD jet and bosons.

The pT distributions of the third leading jet in events satisfying (7.4) and (7.5) are shown
in Fig. 7.13. The description of η of the third jet, relative to the two leading jets, is given by

η∗ = η3 −
η1 + η2

2
, (7.6)

which is shown in Fig. 7.14. The number of events passing the tagging criteria is rather low,
but the sherpa prediction is compatible both with the overall rate and the shape of the
distribution observed in data. pythia predicts a factor 1.7 fewer 3-jet events than seen in
data, and therefore also gives too few events passing the tagging criteria. However, the shape
of the distribution is correctly described.

7.4 Conclusions

A comparison between DØ data and the event generator sherpa for the associated production
of Z/γ∗ → e+e− and n jets has been presented, including a pythia sample as reference. The
pythia simulation describes jets through a parton shower algorithm which has been tuned
to match a matrix element prediction for Z/γ∗ + 1-jet production. The pT spectra of the
di-electron system and for the three leading jets show that pythia predicts fewer jets with a
large value of pT than seen in data, and that the discrepancy increases with jet multiplicity.
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Figure 7.9: The pT distribution of the second jet in data and pythia (left), and in data and
sherpa (right). The lower plots show the ratio of the distribution in data to in
the simulation. The red lines indicate a factor two up and down.

In the 2-jet sample, ∆η(jet, jet) is well described. In the ∆φ(jet, jet) distribution a significant
peak at π is seen in the pythia sample but not in data. In contrast, sherpa event generator,
combining parton shower and matrix element description of jets using the CKKW algorithm,
has been found to offer a good description of the studied jet properties. sherpa has been
shown to give an accurate description of jet multiplicities up to four jets. The pT spectra
predicted by sherpa for the di-electron system as well as for the leading, second and third
highest pT jets are in reasonable agreement with the spectra observed in data. Also angular
correlations between the two leading jets in events with two or more jets are well described
by sherpa.

7.5 Limitations of Detector-level Comparisons

To illustrate the need for measurements corrected for detector effects, comaprisons between
the predicitons of sherpa v1.0.6 and sherpa v1.0.8 are shown in Fig. 7.15, with the total,
jet-inclusive number of events in each sample being equal. The newer sherpa version predicts
10 − 20% less leading jets with a pT above ∼ 60% GeV than the older version. The ratio of
the prediction of v1.0.6 to data in Fig. 7.8 indicate indirectly that the newer version is in good
agreement with data. However, the newer version predicts significantly less 3-jet events than
v1.0.6, whereas data and v1.0.6 agree (see Fig. 7.9). Clearly, the possibility to compare new
versions of sherpa and other generators directly with data would be of great importance, and
to facilitate such comparisons the reconstructed distributions in data must be corrected for
the impact of the detector. In the following two Chapters, the pjet

T spectra and angle ∆φ(di-
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Figure 7.10: The pT distribution of the third jet in data and pythia (left), and in data and
sherpa (right). The lower plots show the ratio of the distribution in data to in
the simulation. The red lines indicate a factor two up and down.

electron, jet) in Z/γ∗(→ e+e−)+N jets data from DØ are measured and used as a benchmark
for detailed comparisons between various commonly used event generator models.
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Figure 7.11: The distribution of the difference in pseudorapidity between the two leading jets
in data and pythia (left), and in data and sherpa (right). The lower plots
show the ratio of the distribution in data to in the simulation. The red lines
indicate a factor two up and down.
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Figure 7.12: The distribution of the difference in azimuthal angle between the two leading
jets in data and pythia (left), and in data and sherpa (right). The lower plots
show the ratio of the distribution in data to in the simulation. The red lines
indicate a factor two up and down.
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Figure 7.13: Events containing three jets were selected if the the difference in pseudorapidity
between the two leading jets exceeds 2.0. The pT of the third jet is shown for
data and pythia (left), and for data and sherpa (right). The lower plots show
the ratio of the distribution in data to in the simulation. The red lines indicate
a factor two up and down.
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Figure 7.14: Events containing three jets were selected if the the difference in pseudorapidity
between the two leading jets exceeds 2.0. The pseudorapidity of the third jet is
shown in the coordinate system where zero corresponds to the average pseudo-
rapidity of the two leading jets, for data and pythia (left), and for data and
sherpa (right). The lower plots show the ratio of the distribution in data to in
the simulation. The red lines indicate a factor two up and down.
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Figure 7.15: Ratios of the three leading pjet
T spectra in Z/γ∗(→ e+e−)+jets production as

predicted by sherpa v1.0.6 to those predicted by sherpa v1.0.8 [104].
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Chapter 8

Correcting Data to Particle Level

The reconstructed spectrum of an observable in data, like pjet
T in Z +1-jet events, depends on

the performance of the detector. One way of comparing the spectrum reconstructed in data
with different theory models is to pass the prediction of each model through a simulation
of the detector, as done in the previous Chapter. This process requires large computer
resources and access to computer codes which are normaly only availiable to members of the
experimental collaboration. To make the data sets useful for theorists, and for the time after
the collaboration has ceased to exist, the reconstructed spectrum of the observable must be
corrected for impact of the detector. The spectrum is normally corrected to the particle level,
defined through the list of stable final-state particles predicted by an event generator [105].
A measurement which is corrected to the particle level can be compared directly with the
predictions of current and future event generator models without any knowledge about the
detector used for the measurement. Below, an observable reconstructed from the detector
signals are referred to as the observable at detector level, in contrast to the observable defined
at the particle level.

The main impact of the detector on the spectrum of an observable is:

• Geometrical acceptance: the detector does not cover the whole 4π region, and events
where one or more of the final-state objects pass through an un-instrumented part of
the 4π phase space are not identified.

• Efficiencies: not all events are registred by the trigger system of the experiment. For
events which do pass the trigger, not all reconstructed objects pass the identification
criteria.

• Energy scales: the kinematic properties of a reconstructed object differs from the
true particle-level properties due to effects like inactive material, uninstrumented re-
gions, noise and pile-up. Energy-scale corrections are applied to assure that pT (particle
level)=pT (detector level) is true on average.

• Detector resolution: after energy-scale corrections the reconstructed energies corre-
spond to the particle-level energies, but only on average. On an object-by-object basis
significant differences between the detector-level energy and the particle-level energy of
the object might remain, depending on the resolution of the detector.

• Misidentification: through misidentification the sample of signal events can receive a
contribution from events arising from background processes. For the rest of this Chapter
it is assumed that the reconstructed spectrum has been corrected for this by subtracting
the estimated background contribution.
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Each of these effects influences the reconstructed detector-level spectrum and must be taken
into account when correcting the spectrum to the particle-level. Several different methods
for correcting a reconstructed observable in data to the particle-level exist. In this Chapter a
short overview over different methods for correcting the reconstructed spectrum of an observ-
able to the particle level is given, and the choice of the method used for the measurements
presented in Chapter 9 is justified.

8.1 Ansatz-Function-Based Method

The Ansatz method for correcting a reconstructed observable to the particle level has been
used in several measurements of the properties of jets in multijet events, for instance the DØ
inclusive pjet

T measurement [106]. The first step is to measure the trigger and identification
efficiency of the final-state objects, as a function of the observable. Next, the resolution of the
observable is measured. A functional ansatz for the paricle-level spectrum of the observable
is assumed. The trigger and identification efficiencies are applied to the function before it is
smeared according to the resolution. The result is referred to as the detector-folded ansatz
function. The energy scale of the reconstructed data objects is calibrated, so that a given
amount of energy, X GeV, at the reconstructed level equals X GeV at particle level. The
detector-folded ansatz function is compared with the reconstructed spectrum of the observable
in data. Any discrepancies between the two spectra implying that the ansatz function differs
from the true particle-level spectrum of data. The ansatz function is iteratively modified
until agreement is observed between the detector-folded ansatz function and data. At this
point, the ansatz function is equal to the true particle-level distribution in data, within the
uncertainties of the efficiencies, the resolution, the energy scale, and the statistical uncertainty
in data.

The ansatz method for correcting data to particle level has the advantage of being highly
transparent. It is well suited for the measurement of pjet

T in QCD events where high statistics
are available to constraint the shape of the ansatz function and to measure the jet trigger
and identification efficiencies as a function of the observable using a tag-and-probe method.
However, a problem with the ansatz method is that an assumption about the functional form
of the particle-level observable in data is needed.

8.2 Event-Generator-Based Ansatz Method

In this method, the Ansatz function is replaced by the particle-level spectrum predicted by an
event generator. A particle-level analysis, corresponding to the detector-level analysis used
for data, is applied to the simulated event sample. The particle-level objects are rejected
according to the trigger and identification efficiencies measured in data. The particle-level
energies and directions are smeared to account for the detector resolutions which are measured
in data. The resulting spectrum is referred to as the detector-folded simulated spectrum.
The simulated particle-level spectrum is iteratively reweighted until agreement is observed
between the detector-folded simulated spectrum and the reconstructed spectrum in data. At
this point, the simulated particle-level spectrum is equal to the true particle-level spectrum
in data within the uncertainties of the efficiencies, the resolution, the energy scale and the
statistical uncertainty in data.

The event-generator-based ansatz method can be used whenever the normal ansatz method
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can be used. In addition, it is practical when the main detector smearing only affects the
observable indirectly: examples are angular measurements like ∆φ(jet,jet) in dijet events.
The angular resolution for jets is normally very good, and the main resolution effect enters
indirectly through the pjet

T resolution. The normal ansatz method with a one-dimensional
function does not work in this case, and one would need a two-dimensional ansatz function in
the observable and the variable which is smeared by the detector resolution, and such a multi-
dimensional ansatz function is most easily accessible through the particle-level prediction of
an event generator.

8.3 Full-Detector-Simulation Method

Another alternative for correcting data to the particle level is to rely on a simulated event
sample passed through a full simulation of the detector. For the Z/γ∗(→ ee)+jets measure-
ments presented in Chapter 9 the electron trigger and identification efficencies are measured
using a tag-and-probe method with ∆φ(e, e) required to be close to π to surpress backgrounds
arising from multijet events. This cut removes a large fraction of the signal events containing
two or more jets, and it is therefore not possible to measure the electron efficiencies as a
function of jet-properties like pT (second jet). Instead, the lepton efficiencies are measured
in the full, jet-inclusive Z/γ∗ sample. Having corrected the lepton efficiencies in the jet-
inclusive sample in simulation to those observed in data, the efficiency as a function of the
jet observables can be determined in the simulated sample. The simulated sample is in this
way used to extrapolate the lepton efficiencies from the inclusive sample, where they can be
measured in data, to the exclusive samples containing one or more jets. This extrapolation
makes both the Ansatz method and the event-generator-based ansatz method unsuitable for
Z+jets measurements.

The resolution of the detector leads to deviations in shape between the reconstructed spec-
trum and the particle-level pjet

T spectra. After calibrating the jet energies the reconstructed
pT of a jet will be distributed approximately according to a Gaussian function whose center
is the pT value of the jet at the particle level, and whose width is equal to the jet energy
resolution of the detector. For the steeply falling pjet

T spectrum the net effect of the resolution

is a migration of events towards higher values of pjet
T . The size of the migration depends on

the shape of the distribution.

8.4 Regularized versus Bin-By-Bin Unfolding

In the simulated event sample a binned migration matrix, Mij, consisting of the event-by-
event value of observable at the detector level versus at the particle level can be built. The
matrix is normalized so that each column contains the probability that an event belonging in
bin j at the particle level is reconstructed in bin i at detector level. If the binned particle-level
spectrum is written as a vector, p, the binned detector-level spectrum d is given by

d = M · p. (8.1)

In other words, the true particle-level spectrum is folded with the detector resolution, repre-
sented by the migration matrix, yielding the detector-level spectrum. Correcting the detector-
level spectrum in data for the impact of the detector resolution means solving equation 8.1
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for the particle-level spectrum, giving

p = M−1 · d. (8.2)

In practice, both d and M are only known with a limited statistical precision, and the right-
hand-side of the equation is highly sensitive to small fluctuations in d. To illustrate this,
two statistically independent toy-MC samples were generated. Each sample contains events
consisting of pairs of pT (jet, particle level) and pT (jet, detector level). The pT (jet, particle
level) values are drawn from a distribution which corresponds to the particle-level pT (leading
jet) distribution for Z/γ∗(→ ll)+jet events as predicted by alpgen+pythia. Each pT (jet,
particle level) value is smeared with the Gaussian corresponding to the jet energy resolution of
the DØ detector to define pT (jet, detector level). The pT (jet, particle level)–pT (jet, detector
level) pairs define a migration matrix, as well as particle-level and detector-level pjet

T spectra.

Two toy-MC samples were generated based on the same alpgen+pythia pjet
T spectrum,

with one sample containing a factor of ten more pjet
T -pairs than the other. The high (low)

statistics sample is analogous to the simulated (data) sample in a real measurement and is
labelled MC (data) below. The particle-level distribution in data, as estimated from the
detector-level data distributions by simply multiplying with the inverted migration matrix
from the MC sample contains large fluctuations and negative bin contents, see Fig. 8.1. The
direct inversion of the migration matrix is clearly not suitable for correcting data to the
particle level, even for the idealized case where both data and simulation share the same true
particle-level distributions.

The fluctuations seen in Fig. 8.1 can be removed using a regularized unfolding technique
which introduces the requirement that either the unfolded distribution is smooth, or that the
ratio of the unfolded distribution to the particle-level distribution in simulation is smooth.
More specifically, instead of determining p using Eq. (8.2), one determines p yielding the
minimal value of

d − M · p + τ · F(p). (8.3)

Here, F(p) is an additional regularization term which is small (large) if p has small (large)
fluctuations between neighboring bins. For example, F(p) can the second derivative of the
distribution. The parameter τ is a scalar number which is referred to as the regularization
parameter. For τ = 0 the particle-level distribution p which minimizes Eq. (8.3) is equal
to the exact solution of Eq. (8.2). For τ → ∞ any linear spectrum, having a vanishing
second derivative, will minimize the value of Eq. 8.3. For suitable values of τ the identified
p will have the property that it is both approximately a solution of Eq. (8.2) and reasonably
smooth, thereby avoiding the large fluctuations of the exact solution of Eq. (8.2) illustrated
in Fig. 8.1. Examples of regularized unfolding algorithms, which also contain techniques for
identifying a suitable value of τ , are GURU [107] and RUN [108].

A simpler alternative to regularized unfolding is to use

pdata ≈ psim

dsim
· ddata. (8.4)

This is refered to as bin-by-bin unfolding since it does not take migration between the different
bins explicitly into account. As for the ansatz-based methods, the simulated particle-level
spectrum can be reweighted until agreement is seen between simulation and data at the
detector level, thus assuring that Eq. (8.4) is satisfied.

Before deciding on whether or not to use the full migration matrix method or the simpler
bin-by-bin method, one can estimate the sensitivity of the measured particle-level distribution
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Figure 8.1: The migration-matrix of a high-statistics sample, labelled MC (upper, left). The
inverse migration matrix contains large fluctuations between neighboring bins
(upper, right). A data sample was generated according to the same particle-level
spectrum as the MC sample, but with a factor of ten less events. The particle-
level and detector-level MC distributions are shown together with the detector-
level data distribution (lower, left). The number of events in the MC sample was
normalized to the data sample. The detector-level data distribution is unfolded
by multiplying with the inverse of the migration-matrix of the MC samples. The
resulting distribution (lower, right) shows large fluctuations and does not give a
good estimate of the genuine truth-level distribution in data.
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in data to potential disagreements in the shape of the observable between simulation and
data. This can be done using a toy-MC study like the one presented in Fig. 8.1, as illustrated
below. The particle-level distribution in data is estimated twice: first, by using regularized
unfolding taking the full migration matrix into account; and second, by using bin-by-bin
unfolding with reweighting of the particle-level spectrum in MC to match data at detector
level. Comparisons between the estimated and the true p gives the accuracy of each method.
The accuracy can be studied as a function of the shape differences between the two samples
by reweighting one of them at the particle level as a function of the observable.

However, these tests of the accuracy of the unfolding require that a regularized unfolding
technique is implemented. An easier test of the need for regularized unfolding is found by
correcting from particle to detector level instead of the other way around. Then there are no
complications from the inversion of the matrix, and mutiplying with M versus with p

d
can be

compared directly without the need of regularization. This was done for the Z+jets analysis
presented in Chapter 9 using various toy Monte Carlo studies. The jet energy resolution
measured in DØ Z/γ∗+jet events was used to smear pT (particle level) values drawn from the
particle-level pjet

T spectrum in Z+jet events as predicted by alpgen+pythia, thus defining
pairs of pT (particle level) and pT (detector level) values. This toy-MC sample, labelled A,
has the particle-level spectrum pA, the detector-level spectrum dA, and the migration marix
MA. A second sample of pT pairs, labelled B, was generated using a different spectrum,
giving pB , dB, and MB . The discrepancy between MA · pB or (dA/pA) · pB and the true
detector-level distribution dA defines the bias of the two methods. Three different spectra
for the sample B were tested, and the resulting studies are presented in Fig. 8.2. In the
first case, B differs from A only by having a less steeply falling slope, corresponding to the
ratio pB/pA increasing from unity at pT≈ 20 GeV to two at pT≈ 200 GeV. The migration-
matrix method has a bias at the per-mille level, whereas the bin-by-bin method has a bias of
∼ 2%. In the second case, sample B contains a Gaussian peak with 5 GeV width, centered at
150 GeV, which is not included in sample A. The migration-matrix method still has a bias
at the per-mille level. The bin-by-bin method fails to take the impact of the resolution on
the peak into account, resulting in a bias of up to 60% around 150 GeV. In the third case, a
Gaussian peak with a width of 5 GeV was inserted in sample A as well, but centered on 155
GeV instead of 150 GeV.

In conclusion, the bin-by-bin method has an acceptably low bias for smooth distributions
like pjet

T in Z/γ∗(→ e+e−)+jets production. Since this method is simpler and more transparent
than regularized unfolding techniques, the bin-by-bin method is the method of choice for the
measurements presented in the next Chapter.
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Figure 8.2: Three toy-MC studies illustrating the bias of the migration-matrix method versus
the bin-by-bin method. In each toy-MC study, the particle-level spectra of A and
B differ in terms of slope (left), in terms of B containing a Gaussian peak (center)
and in terms of the Gaussian in sample A being shifted by 5 GeV with respect to
sample B (right). In each case, the detector-level spectrum in B (dB) is estimated
from the particle-level spectrum in B (pB) using both the migration matrix of A
(MA) and the bin-by-bin ratio of A (dA / pA). The ratio of the estimated to the
true dB defines the bias of the correction method. The migration-matrix method
has a negligible bias in all three cases. The bin-by-bin method has an acceptably
small bias for smoothly falling distributions, but is seen to be unsuitable for more
complex spectra.
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Chapter 9

Measurements of Differential Cross Ssections
in Z/γ∗+jets Events

The analysis presented in Chapter 7 compared data with event samples generated using the
sherpa and pythia event generators and a GEANT-based simulation of the performance of
the DØ detector. It was argued that the reconstructed distributions should be corrected for
the impact of the detector in order to facilitate comparisons with a broader range of theory
predictions, and also with different samples from each generator produced using various
configuration parameters. In Chapter 8, an overview was given over the various techniques
which can be used to correct the spectrum of an observable reconstructed in data for the
bias introduced by the detector. It was shown that a method relying on a simulated event
sample passed through the GEANT-based detector simulation is most suitable in the case
of jet observables in Z/γ∗(→ e+e−)+jets production. In this Chapter, measurements of the
differential pT spectrum of the N th jet1 in Z/γ∗ → e+e− events containing N or more jets
are presented, with N = 1, 2, 3. The measurements are fully corrected for detector effects
and can therefore be compared directly with theory predictions.

9.1 Event Selection

The analysed data sample is described in Sect. 6. Events are required to have been trig-
gered by a single- or di-EM trigger, and physics objects are reconstructed according to the
identification criteria described in Chapter 5. An event is assigned as a Z/γ∗ → e+e− event
(signal event) if it contains two electron candidates with opposite-signed electric charge, both
satisfying pT > 25 GeV and |ηdet| < 1.1 or 1.5 < |ηdet| < 2.5. In order to select events
compatible with the decay of a Z/γ∗-boson, the di-electron invariant mass is required to be
between 65 and 115 GeV. The reconstructed primary vertex is required to have at least three
tracks associated to it and a z coordinate satisfying |z| < 60 cm. It is required that the tracks
of both electron candidates are compatible with arising from the primary vertex.

Jet candidates are reconstructed using the DØ Run II mid-point algorithm using R = 0.5
and the split-and-merge parameter f = 0.5 (see Sect. 3.7.1). Jets are required to satisfy
pT > 20 GeV and |ηdet| < 2.5, and to have a ∆R-separation to both electrons exceeding 0.4.

A total of 65,759 data events pass the event selection. Of these, 8,452/1,233/167 events
have 1/2/3 jets or more, with pjet

T above 20 GeV.

1Ordered in terms of decreasing values of pjet
T .
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9.2 Normalizing the Observables

When using a leading-order event-generator sample to describe data, the sample is usually
normalized either to a fixed-order calculation of the cross section, or to the number of events
observed in data. Consequently, event generators like sherpa and alpgen+pythia need
only to describe differential cross sections relative to the total, jet-inclusive cross section. For
the purpose of testing and validating event generators it is therefore sufficient to measure
the cross section differential in pjet

T relative to the jet-inclusive cross section, 1
σZ/γ∗

× dσ
dpT

,

instead of the differential cross section dσ
dpT

. From an experimental point of view, this has the
advantage that any uncertainty which is uncorrelated with the observable in question cancels
in the ratio calculation. Two examples are the uncertainty of the integrated luminosity of
the data sample, and to some extent of the electron identification efficiency. In addition,
the sensitivity to the simulation of higher-order QED corrections in the Z-decay is reduced
(see below). The measurement of the jet-inclusive Z/γ∗ cross section and comparisons with
theory predictions have already been performed in dedicated studies [109, 110], serving as a
further motivation for only measuring relative cross sections in this study.

9.3 Backgrounds

There is a certain probability that events not arising from Z/γ∗ → e+e− production pass the
event selection criteria, giving rise to background events. The sources of background events
are classified in two groups: processes containing at least two real electrons2, and processes
containing one or zero real electrons. The amount of events from the former group is evaluated
using simulated event samples described in Sect. 6.2. Each sample was normalized to the
measured luminosity using fixed-order cross section predictions at (N)NLO in QCD [55, 34,
111]. The production channels Z/γ∗ → τ+τ−, W , WW and tt̄ are taken into account as
sources of background, whereas events arising from resonant production of Z+gauge boson→
e+e− +2jets are considered as part of the signal. The resulting estimates of the contributions
from events containing one or more real electrons to the selected event sample in data are
summarized in Tables 9.1-9.4. It is seen that the background contamination from processes
containing at least one real electron in the selected data sample is well below 6% in most
bins. The background contamination increases with increasing pT (jet) and jet multiplicity,
but it is always smaller that 0.3 times the statistical uncertainty in the data sample. In
spite of the small cross section for tt̄ production, this channel is the most significant source
of background for these measurements. The selected tt̄ events are thought to be from the
decay mode tt̄ → 2e2ν2b, meaning that the two leading jets are described by pythia using
matrix element calculations which are expected to be relatively accurate. pythia has been
found to give a good description of the kinematics of tt̄ production in various DØ studies.
Assuming a 10% uncertainty for the tt̄ cross section, the uncertainty of the tt̄ background
prediction is well below 1%, and this is considered to be negligible compared with the main
uncertainties of the measurement. The pythia estimate for the Z/γ∗ → τ+τ− background
was validated using alpgen+pythia and no significant changes were seen. The estimated
amount of background events is subtracted from the data sample, and after this step the data
sample is referred to as the background-subtracted data sample.

2The term “real electron” is used for promt electrons only: an electron arising from jet fragmentation is
excluded from this definition.
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NData ΣBackgrounds
ΣBackgrounds

NData

ΣBackgrounds√
NData

tt̄ Z60−130
ττ WW Weν

65759 114.4 0.00 0.4 11.3 65.3 19.9 17.9

Table 9.1: Background contributions to the jet-inclusive Z/γ∗ → e+e− sample.

Binning NData ΣBackgrounds
ΣBackgrounds

NData

ΣBackgrounds√
NData

tt̄ Z60−130
ττ WW Weν

15 - 20 5782 6.3 0.00 0.1 0.1 3.7 1.8 0.7
20 - 28 3802 6.4 0.00 0.1 0.2 2.7 1.4 2.1
28 - 40 2350 4.6 0.00 0.1 1.0 1.3 0.9 1.4
40 - 54 1081 3.4 0.00 0.1 1.7 1.3 0.4 0.0
54 - 73 639 4.3 0.01 0.2 3.0 0.7 0.7 0.0
73 - 95 322 3.2 0.01 0.2 2.4 0.7 0.1 0.0
95 - 120 145 1.4 0.01 0.1 1.3 0.0 0.1 0.0
120 - 154 72 1.1 0.02 0.1 1.1 0.0 0.0 0.0
154 - 200 35 0.3 0.01 0.1 0.3 0.0 0.0 0.0
200 - 300 6 0.2 0.03 0.1 0.2 0.0 0.0 0.0

Table 9.2: Background contributions to the pT (1st Jet) spectrum (pT in GeV).

Binning NData ΣBackgrounds
ΣBackgrounds

NData

ΣBackgrounds√
NData

tt̄ Z60−130
ττ WW Weν

15 - 20 1714 1.4 0.00 0.0 1.1 0.0 0.3 0.0
20 - 28 728 2.6 0.00 0.1 1.5 0.7 0.5 0.0
28 - 40 313 2.9 0.01 0.2 2.3 0.3 0.3 0.0
40 - 54 124 1.8 0.01 0.2 1.7 0.0 0.1 0.0
54 - 73 45 1.2 0.03 0.2 1.2 0.0 0.0 0.0
73 - 200 23 1.3 0.06 0.3 1.3 0.0 0.0 0.0

Table 9.3: Background contributions to the pT (2nd Jet) spectrum (pT in GeV).

Binning NData ΣBackgrounds
ΣBackgrounds

NData

ΣBackgrounds√
NData

tt̄ Z60−130
ττ WW Weν

15 - 20 403 1.8 0.00 0.1 1.1 0.3 0.5 0.0
20 - 28 124 1.2 0.01 0.1 0.8 0.3 0.1 0.0
28 - 44 37 0.4 0.01 0.1 0.4 0.0 0.0 0.0
44 - 60 6 0.2 0.03 0.1 0.2 0.0 0.0 0.0

Table 9.4: Background contributions to the pT (3rd Jet) spectrum (pT in GeV).
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Figure 9.1: Distribution of the di-electron invariant mass in the same-sign sample.

Due to the low probability that a non-electron object is reconstructed as an electron (fake
electron), a very large sample of simulated multijet and γ+jet events would be needed to
get an accurate prediction of the background contribution from these processes (fake-electron
background). Prohibitively large computer resources would be needed for performing a full
detector simulation and the fake-electron background is instead estimated using data events.
The signal selection requires two electron candidates with opposite electric charge, defining
the opposite-sign (OS) sample. The same event selection, but requiring two electron with
the same electric charge defines the same-sign (SS) sample. The charges of two fake electrons
are assumed not to be correlated, and consequently the amount of fake-electron events in
the SS sample represent an estimate of the amount of fake-electron background events in
the OS sample. The di-electron invariant mass spectrum in the jet-inclusive SS sample is
given in Fig. 9.1. Due to the non-negligible probability of the charge of a real electron
being falsely reconstructed, Z/γ∗ → e+e− production also contributes to the SS sample,
and indeed a dominant structure compatible with the Z-peak is seen in the SS sample. An
upper limit for the fake-electron background contribution can be estimated from the mass
ranges corresponding to 20 − 30 GeV above and below MZ . There are 82 (39) events in
the range 61 − 71 GeV (111 − 121 GeV). Assuming these events to be fake-electron events
and a linear background shape under the Z-peak, the estimated background in the 65 −
115 GeV mass range is (82 + 39) ∗ (115 − 65)/20 ≈ 300, corresponding to 0.5% of the OS
sample. This is assumed to be an overestimation of the true background since it ignores the
contribution of Z/γ∗ → e+e− with a falsely reconstructed electron charge to the 61−71 GeV
and 111 − 121 GeV mass ranges of the SS sample. The estimated fake-electron background
in the jet-inclusive data sample is negligible compared with the accuracy aimed for in this
measurement and is therefore not taken further into account. The same method is applied
to estimate the fake-electron background as a function of pjet

T for the three leading jets, and
again no significant contribution was observed (see Fig. 9.2).
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Figure 9.2: Distribution of the di-electron invariant mass vs pT (N th jet) in same-sign events
with at least N jets for N = 1 (top, left), N = 2 (top, right) and N = 3 (bottom).
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9.4 Correction Data to Particle Level

In this analysis the pjet
T distributions reconstructed in data are corrected for detector effects

back to the particle level, using events generated with alpgen+pythia (tune A) and passed
through the full DØ detector simulation and event reconstruction chain. The same selection
as used for reconstructed events in data is applied to the reconstructed events in simulation
(referred to as the detector-level analysis below). For the simulated event sample an additional
analysis is performed using the true particles produced by the event generator (referred to as
the particle-level analysis below), i.e. using the information which would have been registered
by an optimal detector which delivers infinitely precise measurements of the kinematics and
flavours of all stable incoming or outgoing particles involved the pp̄ interaction, with stable
being defined through a lower limit on the proper life time (cτ), namely cτ > 5 mm. This value
is chosen to be well below the inner radius of the beam pipe (18.5 mm) – all later decays
being treated by the detector simulation code. This is in agreement with a Les Houches
accord [105] specifying that measurements should not rely on model-dependent event-history
information.

The event selection in the particle-level analysis is chosen to be analogous to the detector-
level selection: pT1> 25 GeV, |ye| < 1.1 or 1.5 < |ye| < 2.5, and the di-electron system is
defined by the two leading electrons requiring opposite-signed electric charge and 65 < Mee <
115 GeV. Particle-level jets are defined using the same jet algorithm as for reconstructed-level
jets, with the list of input objects being all stable particles except the two electrons associated
with the Z decay as well as any photon with a ∆R-separation to these two electron of less
than 0.2. This latter criterion removes photons which at detector-level are reconstructed as
part of the electron object. All jets are required to have a |y| < 2.5 and a ∆R-separation to
both electrons exceeding 0.4. The final measurements are performed for pjet

T > 20 GeV, but
softer jets are used for the study of systematic uncertainties.

For the ideal case that the event generator model perfectly simulates the true pp̄ colli-
sions, and that the simulated detector describes the real detector perfectly, the particle-level
distribution of an observable in data can be estimated by

Odata
part =

Osim
part

Osim
reco

× Odata
reco = (A× ǫ)−1

sim × Odata
reco , (9.1)

with

(A× ǫ)sim ≡ Osim
reco

Osim
part

(9.2)

where O
data/sim
reco/part is the distribution of the observable in data or simulation at the reconstructed

or particle level. The factor (A×ǫ)sim is referred to as efficiency times acceptance. For an ideal
detector the factor (A× ǫ) is unity. The acceptace A for Z/γ∗ → e+e− production specifies
the fraction of events where both electron pass through an instrumented part of the detector.
The efficiency, ǫ, is given by the probability that both electrons are reconstructed given that
both enter an instrumented part of the detector. In the present analysis the efficiency and
acceptance are not studied separately, but as a product. For steeply falling distributions the
detector resolution for the observable in question gives a net migration of events from particle
to detector level from bins with a large number to bins with small number of entries, and
this effect influences the product (A × ǫ) in each bin. An assumption when correcting data
to the particle level is that

(A× ǫ)data = (A× ǫ)sim. (9.3)
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Figure 9.3: For each photon from the Z-decay in the simulated event sample the log10 of the
∆R separation to the nearest electron electrons plotted versus the 10-logarithm
of ratio pγ

T /pe
T . The distribution is normalized to the total number of events in

the sample.

To assure that this is the case, the performance of the simulated detector is corrected to
correspond to that of the real detector. Additionally, to make sure that the impact of the
migration effects is equal in data and simulation, the shape of the particle-level distribution
in simulation is corrected to be equal to that in data. The uncertainty of the measured
particle-level distribution in data comes from the uncertainty of the estimated background
contributions, and from the uncertainty of the corrections applied to the simulated event
sample to assure that Eq. (9.3) is valid.

9.5 Detector-Level versus Particle-Level Electrons

The measurement uses the particle-level analysis to correct the reconstructed data distri-
bution for detector effects. It is therefore a useful check of consistency to establish that
the objects which enter the detector-level and particle-level are related to each other in a
one-to-one relationship.

One difference between the particle- and detector-level selections is the definition of an
electron. At leading order, the electrons arise from the decay Z/γ∗ → e+e−. When including
higher orders correction the possible decays are Z/γ∗ → e+e−+N ·γ, with N = 0, 1, 2, · · · . In
Fig. 9.3 the minimal ∆R separation for each photon (γ) from Z-decay to the two electrons (e)
from the Z-decay is plotted versus the ratio pγ

T /pe
T for the alpgen sample. The total number

of events was normalized to data. As expected, it is seen that the photons tend to be soft
and/or collinear with respect to an electron. For collinear e−γ pairs, the γ frequently carries
a large fraction of the total momentum of the pair. At detector level, electrons are based
on R = 0.2 cones of energy deposits in the EM calorimeter. Reconstructed electron objects
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Figure 9.4: The pT correlation of pairs of one particle-level and one detector-level electron
using the matching criterion ∆R < 0.2. The correlation is defined once using
particle-level electrons and all reconstructed electron candidates (left); once re-
quiring reconstructed electrons to be fiducial and to pass the ID criteria (center);
and redefining the particle-level object as consisting of the sum of electrons and
any photon in a cone R = 0.2 around it (right).

correspond to the sum of electrons and photons within the R = 0.2 cone. At particle level,
in contrast, an electron does not take nearby photons into account, regardless of proximity
in R, and this leads to off-diagonal elements in the migration matrix between particle-level
and detector-level pe

T (Fig 9.4). Off-diagonal elements also arise from reconstructed close to
φ-cracks in the calorimeter. About 5% of the entries in the migration matrix have preco

T >

1.2 × pparticle
T or the other way around. A diagonal migration matrix can be recovered by

requiring reconstructed electrons to be fiducial, and by defining particle-level electron objects
as the sum of each electron and any photon in an R = 0.2 cone around it. However, since
the Z decay mode and the φdet of the electron are not expected to be correlated with the pjet

T

spectra, the effect of off-diagonal entries cancels in the normalized observable 1
σZ/γ∗

× dσ
dpT

.

To gain statistics reconstructed electrons are not required to be fiducial, and to simplify the
particle-level definition the electron object is not redefined to recover close-by photons.

9.6 Consistency checks of the Jet Definition

The default jet algorithm is the DØ Run II Mid-Point algorithm using a cone radius of R = 0.5
and split-and-merge parameter f = 0.5. To validate that the clustered jets correspond to a
collimated spray of particles, and that R = 0.5 is a suitable choice the measured pjet

T range,
the pT density of particles in particle-level jets in simulation were studied as a function of
pjet

T , see Fig. 9.5. Above a pjet
T of 30 GeV the energy density has its maximum at a separation

of ∆R = 0, in agreement with a naive association of each jet with a single, high-pT parton in
a leading-order picture. At lower values of pjet

T this picture is clearly invalid, and the maximal

energy density is found at 0.1 < ∆R < 0.2 for 10 < pjet
T < 15 GeV. In addition, at low pT

there is a significant tail towards large values of ∆R, and for 10 < pjet
T < 15 GeV ∼ 15% of

the jet pT is carried by particles which do not belong to a naive R = 0.5 cone around the jet
axis. This can happen due to the split-and-merge prescription of jet algorithm and indicates
that a larger cone size might be more suited for probing the pjet

T region below 20 GeV.

As a cross-check that the particle-level jet definition is suitable for probing QCD activity
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particle level, as a function of pjet
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located outside of the naive 0.5 cone, in each pT bin, is given in the legend.

the particle content in particle-level jets was studied. For each jet, the list of contributing
particles was split in classes of particle flavour. The pT of the 4-momentum vector sum for
each flavour, relative to pjet

T , is shown in Fig. 9.6. Each distribution is normalized to the mean
pT fraction of jets arising from the particle flavour in question. As expected, in most jets
the majority of the pT is carried by mesons, followed by baryons. The photon distribution
is peaked both at 0 and 1. The peak at 1 has been traced back to jets consisting mainly of
one high-pT photon from the decay of the Z boson which was radiated at a large angle with
respect to both electrons. These particle-level jets do not probe QCD and are not likely to
be reconstructed as a detector level jet due to their large electromagnetic energy fraction.
This fact introduces sensitivity of the measured pjet

T spectra on the simulation of photons
stemming from Z decay. Since on average photons carry only 4% of the jet pT , and since the
simulation of higher-order QED corrections to the Z decays have been tuned to reproduce
precision measurements from LEP, this effect is expected to be accurately modeled.

9.7 Choice of binning

The correlation between pT (leading jet) at detector and particle level is given in Fig. 9.7 (left).
The detector resolution of an observable (σ) constrains the minimal size of the chosen bins.
The purity (efficiency) of a bin is defined as the fraction of events which contribute to the bin
at detector level (particle level) which contribute to the same bin at particle level (detector
level). If w << σ the purity and efficiency of each bin is low and consequently the number of
entries in a given bin at detector level contains relatively little information about the number
of entries in the same bin at the particle level. As an example, the purity and efficiency for
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Figure 9.7: The correlation between detector-level and particle-level pjet
T for the leading jet

with 1 GeV binning (left). The particle-level pjet
T distribution for jets with

detector-level pjet
T in the bins 28− 29 GeV (right), corresponding to a purity and

efficiency of 5%. The range corresponding to the detector-level bin is indicated
by vertical, red lines.

the 28 − 29 GeV bin is only 5% as seen in Fig. 9.7 (right). In this case neighbouring bins
are highly correlated and this complicates the interpretation of the measurement. To reduce
the correlations between different bins a minimal efficiency and purity for each bin can be
required. Obviously, the bin width should also not be chosen to be too coarse since this
decreases the sensitivity of the measurements to the details of the spectrum.

The binning of the present measurements where chosen such that the efficiency and purities
of each bin is in the range 50−60%. The correlation between pT (leading jet) at detector and
particle level with the chosen binning is given in Fig. 9.8, and as an example the purity and
efficiency of the bin 28 − 40 GeV is seen to be roughly 55%.

9.8 Distinguishing Detector and Generator Effects

In Fig. 9.9 a comparison between the pT spectrum of the leading jet in data and simulation
is given. The simulated event sample is normalized to the measured luminosity of the data
sample using a NNLO prediction for the Z/γ∗ → e+e− cross section times branching ratio
σZ/γ∗ × BR of 241.6 ± 8.7 pb [112, 113]. Above 30 GeV simulation describes the shape
of data, but the normalization is ∼ 10% higher. From this one could conclude that the
particle-level distribution in simulation, scaled down by ∼ 10%, is a good estimate for the
particle-level distribution in data for the pT of the leading jet above pT = 30 GeV. However,
as seen below the electron ID efficiency in simulation is ∼ 10% higher than in data, and
the alpgen+pythia sample contains ∼ 20% less jets than in data. The former discrepancy
affects the detector-level pjet

T spectrum only, whereas the latter affects both the particle-level
and detector-level spectra in approximately the same way. This illustrates that the agreement
between data and simulation at the detector level does not imply that the particle-level
distribution in simulation is a good estimate for the particle-level distribution in data.
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for the measurement of pT (leading jet).
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9.9 Collider-specific corrections

For a correct estimate for data at particle level, the simulated event sample must be cor-
rected in two separate steps. First, corrections are applied to compensate for any relevant
differences between the simulated and the real experimental setups, including both the beam
conditions and the detector performance. Next, it is assumed that any remaining differences
between data and simulation must arise from a lack of accuracy in the event-generator model,
and the simulated event sample is reweighted as a function of particle-level quantities until
agreement is seen at the detector level. At this point, the particle-level distribution in simula-
tion is approximately equal to the particle-level distribution data, and (A×ǫ)data = (A×ǫ)sim
is valid within the uncertainties of the applied corrections. In the following, each correction
step is discussed separately. In particular it is studied to which extent the necessary correc-
tions are a function of pjet

T , or whether correction factors derived in the jet-inclusive sample
can be applied.

9.9 Collider-specific corrections

The output signals from the simulated detector are added to the corresponding information
from zero bias events registered with the real DØ detector to account for effects like noise and
pile-up. The energy density in zero bias events increases with increasing average number of
pp̄ interactions per bunch crossing, and therefore with the Tevatron instantaneous luminosity.

As seen in Fig. 9.10, the instantaneous luminosity profile of the zero bias sample which
was added to the simulated events do not accurately describe the profile of the analyzed data
sample. The simulated event sample was reweighted as a function of instantaneous luminosity
to compensate for this difference.
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Figure 9.10: The zero bias events overlaid on the simulated events have a different instan-
taneous luminosity profile than the data set. The ratio of the instantaneous
luminosity in data and simulation is shown before (left) and after (right) apply-
ing the reweighting procedure.

The distribution of the z coordinate of the primary interaction vertex in simulation is taken
to be a Gaussian with a width σ of 25 cm. This does not reflect the corresponding distribution
in data where a larger fraction of events have large values of |z| than in simulation. This
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affects for instance the identification efficiency of electrons since the track reconstruction
efficiency decreases with increasing |z|. The simulated event sample is reweighted [114] to
reproduce the z distribution measured in data which is shown in Fig. 9.11.
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Figure 9.11: The z coordinate shown in data and simulation before (labeled MC pre) and after
(labeled MC post) applying the reweighting for linear scale (upper left) and log
scale (upper right). The ratio of data to simulation before and after applying
the reweighting are shown on the lower left and lower right, respectively.

9.10 Detector-specific Corrections related to Electrons

The electromagnetic energy scale in data and simulation is defined by requiring that the re-
constructed Z mass corresponds to the world-average value of MZ = 91.1876±0.0021 GeV [1].
Before the corrections the energy resolution is higher in simulation than in data, reflected in
a narrower Z mass peak spectrum. To compensate for this deviation, the energies of simu-
lated electrons are smeared with a Gaussian function. The Z mass peak spectra in data and
simulation before the last correction step is shown in Fig. 9.12, illustrating the effect of both
the energy scale shift and the energy smearing performed to simulation.

The event selection requires data events selected by a single- or di-EM trigger. From earlier
measurements, e.g. Ref. [115], it is known that the DØ trigger efficiency for Z/γ∗ events with
selection criteria used in the present analysis is exceeds 99%. The trigger system is not
simulated, meaning that the trigger requirement is applied only in the analysis of the data
sample. No trigger efficiency correction is applied to the simulated event sample since the
efficiency in data is compatible with 100% with an uncertainty of less than 1%. Additionally,
due to the normalization of the jet observables to the inclusive Z/γ∗ → e+e− cross section, the
effect of a trigger inefficiency would cancel as long as it is not correlated with the observable.
The correlation between the trigger efficiency and the jet activity is studied in Sect. 9.13.1.

The probability for identifying electrons is higher in simulation and in data. To compensate
for this, reconstructed electrons in simulation are rejected with the probability given by the
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Figure 9.12: The dielectron invariant mass in data and simulation before and after the final
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ratio of the ID efficiency in data to that in simulation. This was done using jet-inclusive
efficiencies measured 2-dimensionally in bins of ηdet and φdet provided by [88]. The correlation
between the electron ID efficiency and the jet activity is studied in Sect. 9.13.2.

9.11 Measuring the Inclusive Z/γ∗ → e+e− Cross Section

After applying the corrections described above, the simulated and real detectors have the same
performance for identifying and measuring electrons in jet-inclusive events. Consequently,
(A × ǫ)data = (A × ǫ)sim for the Z/γ∗ → e+e− cross section (σincl). During the data-taking
period, the number of signal events is Ndata

all , according to

Ndata
all = (σincl ×

∫

L dt). (9.4)

Applying the event reconstruction and selection to the data set Ndata
reco events were selected,

with

Ndata
reco = (A× ǫ)data × Ndata

all + NBG, (9.5)

where NBG is the amount of background events. The integrated luminosity of the data sample
was determined in Sect. 6.1.2 to be 1073 pb−1 with an uncertainty of ±6.1%. In Sect. 9.3
the number of background events in the inclusive data sample was estimated to be 114. The
(A×ǫ) in simulation is 0.527 using particle selection criteria analogous to in the detector-level
analysis, namely pT1> 25 GeV, |ye| < 1.1 or 1.5 < |ye| < 2.5 and 65 < Mee < 115 GeV.
During the data taking period, the calorimeter was inactive for ∼ 2.9% of the registered
bunch crossings [116]. This effect is not modeled in the simulated event sample, and therefore
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(A× ǫ)data = (A× ǫ)sim × ǫcalo, with ǫcalo = 0.971. Assuming a conservative 5% uncertainty
for the jet-inclusive electron ID efficiency corrections,

σincl =
1

∫

L dt
× NData

Reco − NBG

(A× ǫ)sim × ǫcalo

=
1

1073 pb−1 × 65759 − 114

0.527 × 0.971

= 119.6 ± 0.5(stat) ± 6.0(sys) ± 7.3(lumi) pb, (9.6)

with the statistical uncertainty indicated labeled (stat), the systematic uncertainty labeled
(sys) and the uncertainty arising from the integrated luminosity of the data sample labeled
(lumi).

Alternatively, the measurement can be performed for the particle-level selection consisting
of 65 < Mee < 115 GeV only, corresponding to extrapolating the measurement from the
single-electron phase space registered at detector level to the full single-electron phase space.
In this case the (A× ǫ) is 0.233, giving

σincl = 270 ± 1(stat) ± 13(sys) ± 16(lumi) pb. (9.7)

The measured cross sections are used for normalizing the jet measurements as described in
Sect. 9.2.

As a consistency check of the present analysis, the inclusive cross section measurement
is compared with the result of a dedicated and more detailed DØ measurement of the Z
cross section [117]. That measurement uses 70 < Mee < 110 GeV, and for this particle-level
selection the (A× ǫ) of the present measurement is 0.238, giving

σincl = 265 ± 1(stat) ± 13(sys) ± 16(lumi) pb. (9.8)

The two measurements are in reasonable agreement as seen in Tab. 9.5. Since the two analysis
use overlapping data-sets and the same luminosity calculation, the statistical uncertainties
and the luminosity uncertainties are fully correlated. However, this is not the case for the
electron efficiency uncertainties due to different electron identification criterias being used.
Since the inclusive cross section is only used for normalization purposes in the present study,
i.e. any effect not correlated with jet observables cancels, the ∼ 2% deviation between the
two measurements seen in Tab. 9.5 has not been investigated any further.

σγ/Z→ee, MZ ∈ [70 − 110] GeV

Present analysis 265 ± 1(stat) ± 13(sys) ± 16(lumi) pb
Ref. [117] 259.3 ± 1.6(stat) ± 5.0(sys) ± 15.8(lumi) pb

Table 9.5: The γ/Z → ee cross section for 70 < Mee < 110 GeV as measured in the present
analysis compared with the result from Ref. [117].

9.12 Detector-specific Corrections related to Jets

So far, the simulated detector performance for electrons has been corrected to correspond
to that of the real DØ detector. The jet-inclusive analysis has been measured and validated
against a dedicated cross section measurement. Before measuring jet-related observables, the
same correction steps must be repeated for the simulated detector performance for jets.
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9.12 Detector-specific Corrections related to Jets

9.12.1 Jet Properties

Reconstructed jet energies are scaled with jet energy scale corrections derived using γ+jet
and dijet events (see Sect. 5.5.3). The jet energy scale corrections guarantee that jets in γ+jet
events have, on average, identical reconstructed energy and particle-level energy. To account
for the difference in jet energy scale between γ+jet events and Z/γ∗+jet events, an additional
set of energy corrections were derived for exclusive, back-to-back Z + 1-jet events using the
SSR method (see Sect. 5.5.4). The SSR method also smears jet energies in simulation to
adjust the jet energy resolution to agree with data.

It should be noted that the measurement only depends on the jet energy scale being the
same in data and simulation, not on this energy scale being correct in the sense that the
pT value of a jet is on average the same on the detector level as on the particle level. The
jet reconstruction and identification efficiency are measured using a tag-and-probe method
in dijet and γ+jet events (see Sect. 5.5.2). In data, the reconstruction efficiency is measured
to be ∼ 100% above ∼ 40 GeV, while being significantly lower for smaller pjet

T values due
to the jet reconstruction threshold (see Fig. 5.4). The jet ID efficiency is 95 − 100% for
20 < pjet

T < 300 GeV. The product of the reconstruction and ID efficiencies in simulation is
found to be 1 − 2% below that in data, and identified jet candidates are rejected based a
probability equal to the ratio of the efficiency in data to that in simulation, binned in ηdet

and pjet
T . An exception is the reconstruction efficiency below ∼ 40 GeV where deviations

of up to 10% are seen (see Fig. 5.4), arising from the interplay between difference in jet
energy response in data and simulation and the jet reconstruction threshold. These latter
discrepancies are taken into account using the SSR method.

Topology Dependency of the Jet Energy Scale

The present analysis relies on the jet energy scale and jet energy resolution in simulation and
data being the same not for the back-to-back Z + 1-jet sample where the corrections applied
to simulation using the SSR method was derived (see Sect. 5.5.4), but for every bin of the
measurements of the pjet

T spectra, within uncertainties. To verify that this is the case, parts
of the SSR study was repeated for different event selections, starting with the back-to-back
exclusive 1-jet selection:

(1) ∆φ(Z,leading jet) > 3.0; Njet = 1;

then, loosening the back-to-back cut,

(2) no ∆φ(Z,leading jet) requirement; Njet = 1;

next, loosening also the veto against sub-leading jets, arriving at the event selections used in
the present measurements,

(3) no ∆φ(Z,leading jet) requirement; Njet ≥ 1;

(4) no ∆φ(Z,leading jet) requirement; Njet ≥ 2;

(5) no ∆φ(Z,leading jet) requirement; Njet ≥ 3.

In the original SSR study the kinematic balance in the event is probed through the distri-
bution of

∆S =
pjet

T − pZ
T

pjet
T

(9.9)

103



Chapter 9 Measurements of Differential Cross Ssections in Z/γ∗+jets Events

in bins of pZ
T . The distribution of ∆S using selection (1) is given in Fig 9.13 for 25 <

pZ
T < 30 GeV and 60 < pZ

T < 70 GeV. For the latter pZ
T bin the distribution corresponds

approximately to a Gaussian distribution centered at zero, as expected if pZ
T ≈ pjet

T with a
pT imbalance arising from the jet energy resolution. For low pZ

T bins like 20 − 30 GeV the

distribution is asymmetric due to the bias arising from the pjet
T > 20 GeV requirement. For

large pZ
T the RMS of the ∆S distribution can be identified with the jet energy resolution, and

the mean with the jet energy scale. For small pZ
T values, below ∼ 50 GeV, the bias from the

lower pjet
T selection means that both the RMS and the mean contains information from both

the jet energy resolution and scale, and one would need to fit a turn-on convoluted with a
Gaussian to extract the two quantities separately. For the present study it is assumed that
agreement between data and simulation for both the RMS and mean implies agreement for
both jet energy resolution and scale.

The RMS and mean of the ∆S distribution (< ∆S >) extracted in bins of pZ
T for both

in data and simulation are given in Fig. 9.14, using selection (1). The jet energy scale
and resolution corrections have already been applied to the simulated sample, so data and
simulation should agree per construction. The structure seen in the RMS spectrum is an
artifact of the algorithm used to prevent isolated, outlying entries in the data histogram from
affecting the RMS. The algorithm affects the RMS value found in different bins, but not the
relative agreement between data and simulation in each single bin.

To facilitate the removal of the ∆φ(Z, jet) criterion and of the veto against sub-leading
jets, ∆S is redefined as

∆S =
PZ(

∑

jets) − pZ
T

pZ
T

, (9.10)

where PZ(
∑

jets) is the transverse component of the 4-momentum vector sum of all jets in
the event, projected onto the axis in the transverse plane defined by pZ

T . The RMS and
mean of this modified ∆S distribution are extracted in bins of pZ

T for event selection (2), and
the results are given in Fig. 9.15. Agreement is seen within uncertainties. Finally, the veto
against sub-leading jets is removed, and the RMS and mean is plotted for events with at least
1 jet (Fig. 9.16) and 2 jets (Fig. 9.17), corresponding to selection (3)-(4) above. For events
with 3 or more jets (selection (5)) the limited statistics in data allows only for one pZ

T bin,
and the corresponding ∆S distribution is given in Fig. 9.18. In all cases, data and simulation
is found to agree within the uncertainties.

In conclusion, the jet energy scale and resolution corrections applied to simulation are valid
within the uncertainties for events with at least N = 1, 2, 3 jets without any requirement on
the event topology, i.e. for the samples uses to measure pT (N th jet).

9.13 Jet Dependency of Electron Corrections

The electron trigger and ID criteria include the isolation, electromagnetic energy fraction and
calorimeter shower shape of the electron objects, hadrons from QCD activity with a small ∆R
separation to an electron can lead to the electron failing the selection criteria of the analysis.
In case the correlations between the jet activity and selection efficiency is not described by
simulation this will occur in a different fraction of the events in data and simulation, and
consequently the assumption that (A × ǫ)data = (A × ǫ)sim is wrong and the measurement
is biased. To account for this, the electron efficiency corrections would have to be measured
and applied as a function of the jet activity in the event.
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Figure 9.13: Data and simulation for ∆S for the exclusive Z + 1-jet back-to-back sample for
pZ

T in the ranges 25 − 30 GeV (left) and 60 − 70 GeV (right).
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9.13.1 Jet Dependency of the Trigger Efficiency

The trigger efficiency for jet-inclusive Z/γ∗ → e+e− events with pe
T > 25 GeV is know to

be ∼ 100% based on a tag-and-probe analysis [89]. The event selection for the efficiency
measurement requires ∆φ between the two electrons greater than 2.0 to reduce the QCD
background. The efficiency of this selection criterion is expected to decrease with increasing
pjet

T and jet multiplicity. Since the cross section for the production of Z/γ∗(→ e+e−)+N jets
is suppressed by approximately αN

s with respect to the inclusive cross section, the trigger
efficiency for events with one or more jets could potentially be significantly less than 100%
without being in contradiction with the jet-inclusive measurement.

To test if the trigger efficiency shows a dependency on the number of jets in the event, the
data sample passing the normal event selection was selected, without applying any trigger
selection. For each event Nfailed is defined as the number of reconstructed electrons associated
with the Z decay which failed to trigger any single-EM trigger. In case that the presence
of jet(s) in an event would reduce the single-EM trigger efficiency significantly, Nfailed would
on average be larger in the samples with at least N jets (N = 1, 2, 3) than in the inclusive
sample (N = 0). In Fig. 9.19 the distribution of Nfailed in data is given for events containing
N = 0, 1, 2, 3 or more jets, and no indication of a reduction in trigger efficiency as a function
of jet multiplicity is seen.
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Figure 9.19: The number of Z decay electrons in selected data events which failed to trigger
any single-EM triggers as function of the jet multiplicity.

To verify that the electrons which fail to trigger any single-EM trigger do so due to their
low pT , the pT distributions for all electrons, for electrons which fired at least one single-EM
trigger (triggered electrons), and for electrons which failed to trigger any single-EM trigger
were studied for events with N or more jets, N = 0, 1, 2, 3. The pT ratio of triggered electrons
to all electrons for jet-inclusive events (N = 0) shows the properties of a turn-on function
expected from the minimal ET criteria of the triggers, as shown in Fig. 9.20. The ratios for
N = 1, 2, 3 are compatible with that for N = 0, validating that jets do not reduce the trigger
efficiency3.

3Note that the trigger efficiency is defined for events which pass (would have passed) the electron ID criteria.
I.e. if nearby hadrons from jet activity leads to an electron failing both the trigger and ID criteria, this
does lead to a reduction in the trigger efficiency.
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Figure 9.20: Transverse momentum distributions for all electrons, those which triggered a
single-EM trigger (triggered electrons), and those which did not, for events with,
from top to bottom on the left, zero, one, two or three or more jets. The
corresponding ratios of the pT of triggered electrons to the pT of all electrons are
shown on the right. No significant dependency on the jet multiplicity is seen.
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9.13.2 Jet Dependency of the Electron ID Efficiency

The electron identification criteria includes several variables which might be influenced by
the presence of QCD activity in the event. If hadrons from QCD radiation deposit their
energy close to the electron, the electron candidate might fail the ID criteria. If this loss of
electrons in data is correctly described in simulation, this effect is taken into account when
correcting the measurement to the particle level since (A×ǫ)data = (A×ǫ)sim. However, since
the electron ID efficiencies in data and simulation were measured for jet-inclusive samples, it
must be tested to which level of accuracy the correlation between the electron ID efficiency
and QCD activity is modeled by the simulation.

Jets pointing in the Direction of Electrons

As a gedankenexperiment, lets assume an event containing only a single electon and a single
jet, both objects carrying the same pT , and that such events are availiable in bins of ∆R(e,jet)
for both data and simulation. For ∆R ≤ X the electron always fails the ID criteria due to
the isolation, shower shape and electromagnetic energy fraction criteria. For X < ∆R ≤ Y
the electron may or may not fail the ID criteria depending on how broad the jet is. For
∆R > Y the two objects do not interfere, and the electron ID efficiency is identical to in
events with no jet. The average ID efficiency in the sample will depend both on the shape
of the ∆R(e,jet) distribution and on how broad the energy deposit arising from a jet is on
average.

It is tested to which extent the ∆R(e,jet) distribution in the simulated Z/γ∗ → e+e− sam-
ple agrees with data at detector level. For each event with exactly one jet the electron-jet
pair with the smallest value of ∆R(e,jet) is selected, and the distribution of this minimal ∆R
is compared between particle level and detector level in the alpgen+pythia sample (see
Fig. 9.21 (left column, top)). The two distributions are in good agreements for ∆R > 0.8,
but for smaller value a lack of events at detector level is observed, corresponding to events
where an electron fails to be identified as such due to the nearby jet. At detector level
the integral of the distribution from ∆R = 0.0 to ∆R = 0.8 is 0.3 compared with 0.11 at
particle level, indicating that 8% of the events fail the detector-level selection due to in-
terference between electrons and jets. The detector-level distribution in alpgen+pythia

shows good agreement with data (Fig. 9.21 (left column, center)), both above and below the
kink at ∆R = 0.8. No significant differences are seen between the particle-level distribution
predicted by alpgen+pythia and those predicted by sherpa and pythia (Fig. 9.21 (left
column, bottom). Similar conclusions can be draw for events with two jets (see Fig. 9.21
(central column)) and three jets (see Fig. 9.21 (central column)). This shows that the alp-

gen+pythia sample passed through the detector simulation gives an accurate description
of the inefficiency of the electrons identification in data due to jets with a ∆R(e,jet) value of
less than 0.8.

Low-pT Particles pointing in the Direction of Electrons

It could be the case that the inefficiency of the electron identification due to jets satisfying
pT > 20 GeV is well described by simulation, but that there are discrepancies between data
and simulation for the inefficiency arising from low-pT QCD radiation which is not clustered
in a jet. Due to the energy resolution in the calorimeter, and to the jet reconstruction
threshold, this is difficult to study using calorimeter information only. This low-pT radiation
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Figure 9.21: Distributions of the minimal ∆R(e,jet) distance of all electron-jet pairs in event
with one jet (left coloumn), two jets (central coloumn) and three jets (right
coloumn). The particle-level and detector-level distributions in alpgen+pythia

(upper row) indicate that electrons tend to fail the ID criteria if ∆R(e,jet) <
0.8. The integral of each distribution for the interval 0.0 < ∆R(e,jet) < 0.8
is given in the legend. Data and alpgen+pythia are in agreement within
the statistical uncertainties (central row). No significant differences are seen
between the particle-level distributions predicted by alpgen+pythia sherpa

and pythia (lower row).
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is probed using the multiplicity and momentum distribution of charged tracks in the event.
The information on neutral particles is lost, but the momentum resolution is improved as
compared with the calorimeter. Tracks are selected through an upper cut on the χ2 of the
fitted track with respect to the hits in the tracker and |η| < 2.5. Only tracks which point
towards the primary interaction vertex are taken into consideration. No pT cut was applied
explicitly, but the reconstruction threshold is 400 MeV. Tracks which are closer to the axis
of a reconstructed jet than 0.5 are rejected, as are tracks closer than 0.4 to an electron.
The scalar pT sum and average pT of tracks passing the selection are studied in bins of jet
multiplicity. Assuming that the simulated event sample has a different electron ID efficiency
in N -jet events than data due to different amounts of low-pT particles from QCD activity,
the ratio of the distribution of the scalar track pT sum (or average track pT ) in N -jet events
relative to in 0-jet events in simulation must be different than in data.

The comparisons between 1-jet and 0-jet events are given in Fig. 9.22 (left) and Fig. 9.23
(left). Events with one jet have, on average, a significantly higher scalar pT track sum,
and a higher average track pT , than 0-jet events. While the distributions for 0-jet and
1-jet events in simulation do not agree with data, the ratio is seen to be well described.
Studying the ratio between the track distributions in N -jet and 0-jet events cancels any
differences between data and simulation arising from effects which are not correlated with the
number of jets from the hard scattering, e.g. tracks arising from multiple parton interactions
or from additional pp̄ collisions during the same bunch crossing. Since the ID efficiency
for inclusive events in simulation has already been corrected to data (see Sect. 9.10), it is
enough that the simulation describes the track distributions relative to 0-jet events correctly.
In addition, due to the normalization of the measurements to the incluisve cross section,
only disagreements between data and simulation which correlate with jet activity are of
importance. The same distributions, for 2-jet and 3-jet events, are given in Fig. 9.22 (center)
and (right) and Fig. 9.23 (center) and (right), respectively. It is seen that simulation and
data disagree for the distributions themselves, whereas agreement is seen for the ratios to the
distributions for 0-jet events.

9.14 Correcting Kinematic Properties of the Simulated Event
Sample

Having applied the corrections above, the performance of the simulated and real detector
is equal with respect to all properties judged to be relevant for the measurements of the
normalized pjet

T spectra. Comparisons between reconstructed spectra in data and simulation
for pT (dielectron), pT (leading jet), pT (dielectron) for 1-jet events and ∆φ(Z,jet) are given
in Fig. 9.24. The simulated events sample was normalized to the number of jet-inclusive
events in data. Significant differences are seen for all four observables. A minimum for
(A× ǫ)data = (A× ǫ)sim to be valid for the pjet

T spectra which are to be measured is that the

pjet
T spectra themselves show agreement. However, in order to claim that the data sample is

well understood, reasonable agreement for all four observables would be preferable. Several
different reweighting schemes for achieving this were devised and tested.
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Figure 9.22: The scalar pT sum of tracks in N -jet and 0-jet events for N = 1 (top, left),
N = 2 (top, center) and N = 3 (top, right). Only tracks which are not pointing
towards a reconstructed jet or electron were taken into account. The ratios of
the N -jet distributions to the 0-jet distributions are shown for N = 1 (bottom,
left), N = 2 (bottom, center) and N = 3 (bottom, right).
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Figure 9.23: The average pT of tracks in N -jet and 0-jet events for N = 1 (top, left), N = 2
(top, center) and N = 3 (top, right). Only tracks which are not pointing towards
a reconstructed jet or electron were taken into account. The ratios of the N -jet
distributions to the 0-jet distributions are shown for N = 1 (bottom, left), N = 2
(bottom, center) and N = 3 (bottom, right).
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Figure 9.24: Data vs alpgen+pythia (labeled Alpgen) for the following observables (from
top to bottom): pZ

T for jet-inclusive events, pT (leading jet) and finally pZ
T and

∆φ(Z,leading jet) for events with at least one jet. The distribution is shown on
the left, the ratio data to simulation on the right. All pT values are given in
units of GeV.
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1D pZ

T
re-weighting

One option is to reweight the simulated event sample as a function of the particle-level pZ
T

to reproduce the DØ Run II pZ
T measurement [118]. As seen in Fig. 9.25, this improves the

agreement for pjet
T as well as, per construction, the pZ

T of the jet-inclusive sample. However,
the pZ

T in the 1-jet sample is not improved, indicating that data and alpgen+pythia have

different correlations between pjet
T and pZ

T in 1-jet events. Additional discrepancies also remain
for the ∆φ(Z,jet) spectrum.

2D re-weighting to sherpa

As an alternative, alpgen+pythia was reweighted to sherpa version 1.0.11 at the particle
level. The latter generator is known to give a good description of data (see Chapter 7
and Ref. [119]), and a particle-level reweighting to sherpa is an attempt to transfer this
agreement to the alpgen+pythia sample. The two event generators are found to have
different pZ

T vs pT (leading jet) correlations as seen in Fig. 9.26. For both generators the

majority of events are approximately compatible with the LO picture where pZ
T = pjet

T . The
alpgen+pythia sample in addition have a non-negligible fraction of 1-jet events where pZ

T

is less than 5 GeV and uncorrelated with pjet
T . This class of events does not appear in the

subsample of alpgen+pythia events where no multiple parton interactions (MPI) took place
(no-MPI sample), proving that the jets in question arise from MPI. Events where the MPI
model produced one or more parton-parton scatter in addition to the hard interaction were
rejected by exploiting that the pythia model used to simulate MPI only generates 2→2
scatterings and does not employ a parton shower algorithm for MPI scatterings. As a result,
all parton pairs generated by the MPI model are exactly back-to-back in the transverse
plane. It was confirmed that no such parton pairs occur in event samples generated with
the MPI model turned off, meaning that MPI parton pairs can be tagged uniquely in the
event-generator history.

It was also attempted to reweight the alpgen+pythia sample two-dimensionally to repro-
duce the pjet

T –pZ
T correlation of the sherpa sample. This lead to a reasonable level of agree-

ment with data from pZ
T , pjet

T and pZ
T for 1-jet events, but the discrepancies in the ∆φ(Z,jet)

spectrum remained. Motivated by this, the correlation between pZ
T vs ∆φ(Z,leading jet)

was studied and found to be sensitive to the modelling of MPI as well, see Fig. 9.27. The
alpgen+pythia sample is seen to have a large amount of events with low pZ

T and a jet
whose direction of flight is uncorrelated with that of the Z boson, and these events do not
appear in the no-MPI sample. For this study particle-level jets with pT down to 5 GeV are
taken into consideration. The alpgen+pythia sample was reweighted two-dimensionally
at particle level to reproduce the correlation seen in sherpa. For events with zero jets a
one-dimensional pZ

T reweighting to sherpa was applied instead. This leads to reasonable
agreement with data at detector level for all four test variables, see Fig. 9.28. These studies
indicate that alpgen+pythia using Tune A predicts more jets from MPI than observed in
data, and also that sherpa describes the amount of MPI in data well.

This is in agreement with the Ref. [120] where it is noted that sherpa needs significantly
fewer MPI interactions per event (1.08 compared with 6.35) than pythia using Tune A in
order to reproduce studies of dijet events which measure the number and pT distribution
of charged tracks which have a large ∆R separation to the two jets [121]. It is noted that
the MPI model in pythia is made to generate a large average number of MPI scatterings
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Figure 9.25: Data vs alpgen+pythia (labeled Alpgen) using pZ
T -reweighting, for the follow-

ing observables (from top to bottom): pZ
T for jet-inclusive events, pT (leading

jet) and finally pZ
T and ∆φ(Z,leading jet) for events with at least one jet. The

distribution is shown on the left, the ratio data to simulation on the right. All
pT values are given in units of GeV.
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Figure 9.26: The particle-level correlation between pT (Z) and pT (leading jet) (both in GeV)
for alpgen+pythia, sherpa and the alpgen+pythia subsample with no MPI.
Local maxima are indicated by red lines.

117



Chapter 9 Measurements of Differential Cross Ssections in Z/γ∗+jets Events

 (Z)T
p

0
5 10

15
20

25 30  (Z, le
ading jet)

φ∆0
0.5

1
1.5

2
2.5

3

210

310

ALPGEN

 (Z)T
p

0
5

10
15 20

25
30  (Z, le

ading jet)

φ∆0
0.5

1
1.5

2
2.5

3

210

310

SHERPA

 (Z)T
p

0 5
10 15

20 25
30  (Z, le

ading jet)

φ∆0
0.5

1
1.5

2
2.5

3

210

310

ALPGEN: no MPI

Figure 9.27: The particle-level correlation between pT (Z) (in GeV) and ∆φ(Z,leading jet) for
alpgen+pythia, sherpa and the alpgen+pythia subsample with no MPI.
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Figure 9.28: alpgen+pythia (labeled Alpgen) reweighted two-dimensionally in pZ
T and

∆φ(Z,leading jet) to sherpa compared with data for the following observables
(from top to bottom): pZ

T for jet-inclusive events, pT (leading jet) and finally pZ
T

and ∆φ(Z,leading jet) for events with at least one jet. The distribution is shown
on the left, the ratio data to simulation on the right. All pT values are given in
units of GeV.
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to compensate for a lack of QCD activity arising from the main parton-parton scattering
due to the parton-shower approach used in pythia. In contrast, the matrix-element based
description used in sherpa predicts more tracks arising from the main interaction, leaving less
activity to be explained by the MPI model. As for the case of the tuning of intrinsic pT (see
Sect. 3.4.3), this illustrates the danger of absorbing data vs simulation discrepancies arising
from compensating for deficiencies in the perturbative, high-pT calculation using theoretically
weakly constrained models which account for low-pT effects.

The remaining disagreements between the reweighted alpgen+pythia sample for the
inclusive pZ

T distribution seen in Fig. 9.28 reflect that sherpa predicts a somewhat more
events with large pZ

T values than observed in data, as was seen in Sect. 7.3. A second, one-
dimensional particle-level reweighting function given by the detector-level ratio of pZ

T in data
to that in the sherpa-reweighted alpgen+pythia sample is performed to correct for this,
and the results are given in Fig. 9.29.

Low-pT bias in simulation

A rapid increase in the ratio data/simulation is seen for pT (leading jet) below 20 GeV in
Fig. 9.28. This effect could arise either due to the event-generator model or to the detec-
tor description. In the former case the particle-level pT (leading jet) spectrum should be
reweighted below 20 GeV. Due to the jet energy resolution, this would also impact (A× ǫ)sim
for pjet

T > 20 GeV, thereby influencing the measurements of the pjet
T spectra, where the first

measurement bin is 20 − 28 GeV. In case the deviation below 20 GeV arises from a prob-
lem with the detector description, only the detector-level spectrum below 20 GeV should be
corrected, and the measurements are not influenced. In Fig. 9.30 the reconstrcted pjet

T dis-

tribution in simulation before jet energy scale corrections (puncorr
T ) is shown for jets with pjet

T

after applying jet energy scale and SSR corrections (pcorr
T ) in the two intervals 15 − 16 GeV

and 20 − 22 GeV. The cut-off at 6 GeV reflects the pT threshold applied in the jet re-
construction algorithm, and the sharp turn-off in the spectrum of puncorr

T for jets satisfying
15 < pcorr

T < 16 GeV indicates that jets which failed the 6 GeV threshold would have had
a pcorr

T value in this range. In data the smearing which is emulated in the SSR method by
a Gaussian smearing takes place in the detector, i.e. before the reconstruction threshold is
applied, whereas in simulation it happens afterwards, and this difference leads to a bias in the
reconstructed pjet

T spectrum in simulation. To evaluate the size of the bias, the puncorr
T distri-

bution is fitted with a Gaussian, and the size of the missing contribution from jets which failed
the threshold cut is estimated as the ratio of the integral of the fit for the interval [0, 6] GeV
to the integral for the interval [0,∞) GeV, yielding 24.2%. For 20 < pcorr

T < 22 GeV the
loss is less than 2%. It was found that simulation agrees well with data down to 15 GeV
if the reconstructed pT (leading jet) spectrum in simulation is corrected for the estimated
contribution from jets which failed the reconstruction threshold. Based on this, and that the
measurements are performed for pjet

T > 20, no corrections are applied to the simulated event
sample to remove the discrepancies seen in Fig. 9.29 below 20 GeV.

1D pjet
T

re-weighting to data

So far the reweighting procedure has dealt with discrepancies only for the leading jet. For the
measurement, agreement is also needed for the pT spectra of the 2nd and 3rd jets. Since differ-
ent slopes translates into different (A× ǫ) separate one-dimensional particle-level reweighting
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Figure 9.29: Comparisons between data and alpgen+pythia (labeled Alpgen) reweighted
two-dimensionally in pZ

T and ∆φ(Z,leading jet) to sherpa, and then one-
dimensionally in pZ

T to data. The following observables are shown (from top
to bottom): pZ

T for jet-inclusive events, pT (leading jet) and finally pZ
T and

∆φ(Z,leading jet) for events with at least one jet. The distribution is shown
on the left, the ratio data to simulation on the right. All pT values are given in
units of GeV.
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Figure 9.30: The distribution of pjet
T before jet energy scale corrections in bins of the jet energy

scale and SSR corrected pjet
T . The contribution which would have come from jets

which failed the 6 GeV reconstruction threshold is estimated from the Gaussian
fit. For pcorr

T in the range 15 − 16 GeV (20 − 22 GeV) the bias is estimated to
be ∼ 24% (less than 2%).

functions of the pT (N th jet) to data are applied when measuring pT (N th jet). The ratio of
data to simulation for pT (N th jet) before reweighting together with the fitted reweighting
function and the ratio after reweighting are given in Fig. 9.31. The difference in (A × ǫ)
between applying and not applying the pjet

T reweighting is taken as a systematic uncertainty
of the measurement.

1D ηjet re-weighting to data

alpgen+pythia predicts a narrower ηjet distribution than seen in data. To correct for this
the Alpgen sample was reweighted as a function of η at particle level using the reweighting
functions from Ref [122]. The impact of this reweighting on η(leading jet) is seen in Fig. 9.32.
The difference in (A× ǫ) between applying and not applying the ηjet reweighting is taken as
a systematic uncertaintiy of the measurement.

9.15 Jet Energy Resolution Changes the pjet
T Hierarchy

The pjet
T reweighting to data is defined separately for each of the pT (N th jet) spectra, and

agreement between data and simulation is therefore not guaranteed for the pT spectra of the
(N − 1)th or (N + 1)th jet. Due to the jet-energy resolution, the N th jet at particle level
might be reconstructed as the (N − 1)th or (N + 1)th jet at detector level. How often this
occurs depends on the relative cross sections (pT (N th jet)/pT ([N + 1]th jet) and (pT (N th

jet)/pT ([N + 1]th jet). In case these ratios are significantly different in data and simulation
the impact of the jet energy resolution causing the jets to have a different pT ordering at
detector level than at particle level is not described correctly in simulation, with the result
that (A×ǫ)data 6= (A×ǫ)sim. As a cross-check, the ratios are given in Fig. 9.33 for N = 1, 2, 3.
Reasonable agreement between simulation and data is seen in all cases. Given that the jet
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Figure 9.31: The ratios of data to alpgen+pythia for pT (N th jet), after reweighting two-
dimensionally to sherpa in pZ

T and ∆φ(Z,leading jet), and one-dimensionally to
data in pZ

T , fitted with a reweighting function (left). Ratios after this additional

one-dimensional pjet
T reweighting to data are shown on the right.
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Figure 9.32: Simulation compared with data for η(leading jet) before (left) and after (right)
applying the ηjet-reweighting from Ref. [122].

energy resolution is equal in data and simulation after corrections, the pT -ordering of the jets
will differ between particle-level and detector-level in the same way in simulation and data.

9.16 Total correction factors

Having applied three different categories of corrections to the simulation, accounting for
a non-perfect simulation of the collider setup, the detector and the physics of pp̄ collisions,
(A×ǫ)sim is equal (A×ǫ)data within the estimated uncertainties. The systematic uncertainties
of the measurements arise from the uncertainties of the background estimates, which were
found to be negligible (see Sect. 9.3), and from the uncertainties of the corrections applied to
the simulated event sample. Each correction was varied separately within its uncertainties,
and the resulting variations in the measured pjet

T spectra were added in quadrature to give
the total systematic uncertainty of the measurements. The central values for (ǫ × A)sim for
pT (three leading jets) are shown in Fig. 9.34, together with the predictions corresponding to
±1σ shift of the main systematic uncertainty of the measurements, namely the uncertainty
of the corrections of the jet energy scale in simulation to correspond to that in data.

9.17 Extrapolation for the ∆R(e, jet)> 0.4 cut

The event selection requires jets to be separated from the two selected electrons by ∆R(e,
jet)> 0.4 both at detector and particle level. The efficiency of this requirement at particle
level as determined in event samples generated using alpgen+pythia, pythia and sherpa

is given in Fig. 9.35. The measured particle-level spectrum in data is scaled with the inverse
of the average of the three efficiency predictions, with the maximal difference between the
average and each of the three predictions being assigned as a systematic uncertainty. Since
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Figure 9.33: The ratios of pT (M th Jet) to pT (N th Jet) for events with at least N jets for
(M,N) = (2, 1) (upper, left), (1, 2) (upper, center), (3, 2) (upper, right), (1, 3)
(lower, left), (2, 3) (lower, center) and (4, 3) (lower, right). The distributions are
normalized to the number of events with at least N jets.
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Figure 9.34: (A × ǫ)sim for the pT spectra of the first (upper row), second (middle row)
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T spectra.

this uncertainty is below 1% in each bin it is considered to be negligible compared with the
main systematic uncertainties of the measurement and is not taken further into account.

9.18 Extrapolation for the lepton cuts

Like the measurement of the inclusive Z/γ∗ → e+e− cross section in Sect. 9.11, the pjet
T

measurements are preformed for two different particle-level selections: once with electron
selection criteria corresponding to those applied at detector level (selection a), i.e. pT1 >
25 GeV, |ye| < 1.1 or 1.5 < |ye| < 2.5 and 65 < Mee < 115 GeV and once where only
65 < Mee < 115 GeV is required (selection b). For each particle-level electron selection,
the pjet

T spectra are normalized to the inclusive Z/γ∗(→ e+e−) + X cross section measured
using the same particle-level selection. According to the results presented in Sect. 9.11, the
ratio of the inclusive cross section for selection a to for selection b is 0.443. In Fig. 9.36 this
ratio is given as a function of pjet

T for the three leading jets, as predicted by sherpa, alp-

gen+pythia and pythia. For alpgen+pythia the extrapolation was derived both with
and without reweighting two-dimensionally to sherpa in pZ

T and ∆φ(Z,leading jet) as well
as one-dimensionally to data in pZ

T . For pythia the correction was derived with and without
a one-dimensional reweighting to data for pZ

T [123]. The sherpa prediction is taken as cen-
tral value and the maximal difference to the four other predictions is quoted as a systematic
uncertainty for the measurements for selection b. The PDF uncertainty was evaluated using
the Hessian method [124] and was found to be negligible. The motivation for extrapolation
the measurement from selection a to b is that it simplifies direct comparisons with other mea-
surements which have a different detector-level lepton acceptance. Originally a combination
of the measurements presented in this Chapter with a similar measurement performed in the
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9.19 Uncertainties
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Figure 9.36: Ratio of pT (N th jet) for selection a) to for selection b as predicted by sherpa,
alpgen+pythia and pythia for N = 1 (above), N = 2 (center) and N = 3
(below).

Z → µµ channel was foreseen4, and since the detector acceptance for electrons and muons
differ an extrapolation to a common particle-level selection would be needed to combine the
results. This common phase space was foreseen to be selection b.

9.19 Uncertainties

To estimate the uncertainty of the measurement, each correction applied to the simulated
event sample was varied separately by ±1σ and the resulting variations in the measured

1
σZ/γ∗

× dσ
dpT

spectra were added in quadrature to give the total systematic uncertainty of the

measurements. The resulting systematic uncertainties for the pT spectra of the three leading
jets are given graphically in Figs. 9.37–9.39 and numerically in Tabs. 9.6–9.7.

The largest source of uncertainty is the correction of the jet energy scale in the simulated
event sample to correspond to the jet energy scale of the data sample, contributing (50–
80)% of the total systematic uncertainty of the measurements. The uncertainties of the
kinematic reweighting of the alpgen+pythia sample is taken to be the variation in the
measurements arising from applying and not applying the pjet

T and ηjet reweighting functions.
Additional sources of uncertainties are the corrections of the jet energy resolution and of the
jet identification efficiency. The measurements are quoted both for particle-level selection a
and b, see Sect. 9.18. For the latter selection the event-generator based extrapolation from
selection a to selection b introduces an additional uncertainty, see Sect. 9.18. Presenting
the measurements as ratios to the inclusive Z/γ∗(→ e+e−) + X cross section cancels the
dependence on the uncertainty in the integrated luminosity of the data set.

9.20 Final Results

Having preformed the above-mentioned corrections to the simulated events sample, the
particle-level observables in data can be expressed as Odata

part = (A × ǫ)sim × Odata
part . The

4This combination has not been performed since the muon analysis [125] has not been finalized.
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Figure 9.37: The systematic uncertainty of the measurement of pT (leading jet) is split in
two groups of contributions arising from the detector simulation (upper left)
and from the event-generator simulation (upper right). In the lower figure the
total statistical and systematic uncertainties are given, together with the sum
in quadrature of the systematic uncertainties arising from detector and event-
generator related corrections. All pjet

T values are in units of GeV.
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Figure 9.38: The systematic uncertainty of the measurement of pT (second jet) is split in
two groups of contributions arising from the detector simulation (upper left)
and from the event-generator simulation (upper right). In the lower figure the
total statistical and systematic uncertainties are given, together with the sum
in quadrature of the systematic uncertainties arising from detector and event-
generator related corrections. All pjet

T values are in units of GeV.
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Figure 9.39: The systematic uncertainty of the measurement of pT (third jet) is split in two
groups of contributions arising from the detector simulation (upper left) and from
the event-generator simulation (upper right). In the lower figure the total statis-
tical and systematic uncertainties are given, together with the sum in quadrature
of the systematic uncertainties arising from detector and event-generator related
corrections. All pjet

T values are in units of GeV.
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9.20 Final Results

Total Detector Corr Kinematic Corr
pT (Jet) σstat σsys JES JER ǫID(jet) pT (jet) η(jet) Sel a→b

[GeV] [%]

20 - 28 1.6 7.0 5.7 0.2 1.1 0.7 0.4 3.8
28 - 40 2.1 4.6 3.0 0.1 1.0 0.6 2.5 2.1
40 - 54 3.1 3.9 2.8 0.2 0.9 1.1 0.7 2.1
54 - 73 4.0 4.1 2.7 0.1 0.7 1.0 1.3 2.4
73 - 95 5.6 8.2 3.9 0.1 0.5 4.9 4.2 3.1
95 - 120 8.4 8.9 4.4 0.3 0.8 5.7 4.1 3.1
120 - 154 12.0 10.9 5.9 0.1 1.2 7.0 4.7 3.2
154 - 200 17.1 14.2 12.3 0.2 0.4 3.4 5.4 3.3
200 - 300 41.9 25.2 20.6 0.1 1.1 7.7 11.7 3.6

Table 9.6: Overview of the different uncertainties of the measurement of pT (leading jet). The
main source of systematic uncertainty is the jet energy scale (JES) corrections.
Other sources of systematic uncertainty is the jet energy resolution (JER), the
jet identification efficiency (ǫID(jet)), as well as the pjet

T and ηjet reweighting. The
extrapolation from selection a to selection b is an additional source of uncertainty
for the results quoted without selection criteria on the electron pT and y. The
various systematic uncertainties were combined in quadrature to give the total
systematic uncertainty.

Total Detector Corr Kinematic Corr
pT (Jet) σstat σsys JES JER ǫID(jet) pT (jet) η(jet) Sel a→b

[GeV] [%]

20 - 28 3.7 10.9 9.7 0.3 1.7 1.3 2.2 3.9
28 - 40 5.7 6.0 4.4 0.3 1.0 2.3 1.0 2.9
40 - 54 9.1 6.8 4.1 0.9 2.5 3.3 1.8 3.0
54 - 73 15.3 9.0 5.7 0.9 2.8 2.8 4.8 3.0
73 - 200 22.1 8.0 4.0 0.0 1.4 5.3 3.0 3.1

Table 9.7: Overview of the different uncertainties of the measurement of pT (second jet). See
the caption of Table 9.6 for details about the labelling of the various sources of
systematic uncertainty.

Total Detector Corr Kinematic Corr
pT (Jet) σstat σsys JES JER ǫID(jet) pT (jet) η(jet) Sel a→b

[GeV] [%]

20 - 28 9.1 15.5 10.8 0.4 2.6 8.3 2.0 6.8
28 - 44 16.6 10.8 6.2 0.6 2.2 2.5 4.4 6.8
44 - 60 42.2 13.0 4.5 0.5 2.8 5.6 7.8 7.0

Table 9.8: Overview of the different uncertainties of the measurement of pT (third jet). See
the caption of Table 9.6 for details about the labelling of the various sources of
systematic uncertainty.
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65 < Mee < 115 GeV, pe
T > 25 GeV, 65 < Mee < 115 GeV

|ye| < 1.1 or 1.5 < |ye| < 2.5

pT (Jet) Bin ctr. # of 1
σZ/γ∗

× dσ
dpT (jet)

σstat σsys
1

σZ/γ∗
× dσ

dpT (jet)
σstat σsys

[GeV ] [GeV ] Events [1/GeV ] [%] [%] [1/GeV ] [%] [%]

20 - 28 23.6 3795.6 6.81 × 10−3 1.6 5.9 7.19 × 10−3 1.6 7.0
28 - 40 33.4 2345.4 2.99 × 10−3 2.1 4.0 3.22 × 10−3 2.1 4.6
40 - 54 46.3 1077.6 1.23 × 10−3 3.1 3.3 1.37 × 10−3 3.1 3.9
54 - 73 62.4 634.7 5.04 × 10−4 4.0 3.3 5.74 × 10−4 4.0 4.1
73 - 95 82.6 318.8 2.03 × 10−4 5.6 7.6 2.27 × 10−4 5.6 8.2
95 - 120 105.8 143.6 7.29 × 10−5 8.4 8.4 7.62 × 10−5 8.4 8.9
120 - 154 133.9 70.9 2.64 × 10−5 12.0 10.4 2.54 × 10−5 12.0 10.9
154 - 200 171.7 34.7 8.08 × 10−6 17.1 13.8 6.99 × 10−6 17.1 14.2
200 - 300 229.2 5.8 7.46 × 10−7 41.9 24.9 5.58 × 10−7 41.9 25.2

Table 9.9: Summary of the pT (leading jet) measurement. For each bin the following infor-
mation is given: bin center; number of events after background subtraction; and
the measured cross section with uncertainties for both selection a and b.

measured distributions of 1
σZ/γ∗

× dσ
dpT

for the N th jet in Z/γ∗ → e+e− events with at least

N jets are summarized in Table 9.9 for N = 1, Tab. 9.10 for N = 2 and Tab. 9.11 for
N = 3. Each measurement is specified both for selection a and selection b and is normalized
per 1 GeV. For each bin the corrected bin center is specified, following the method given in
Ref. [126]. Given a continuous prediction of an observable f(x) which is then binned in x
and normalized per x unit, the corrected center of each bin is the value x1 at which f(x1) is
equal to the bin content. The corrected bin centers were derived using a LO mcfm prediction
for each observable using a histogram with 1 GeV binning. The continuous prediction was
estimated as the curve given by a linear extrapolation between the bin centers of the mcfm

prediction. The sensitivity of the corrected bin center pT value to the slope of the distribution
was found to be negligible by reweighting the mcfm spectrum to decrease by a factor of ten
more or less than data when going from 20 GeV to 300 GeV.

The measured cross sections per bin for selection b vary over three orders of magnitude
from 5.8·10−2×σZ/γ∗ or 15 pb in the 20−28 GeV bin for pT (leading jet), to 5.6×10−5×σZ/γ∗ ,
or 15 fb. As a comparison, the latter number is about 70 times smaller than the cross section
for Standard Model Higgs production at the Tevatron assuming MH = 120 GeV [127].

For pT (leading jet) in the range 28 < pT < 73 GeV the measurement has a total uncertainty,
defined as the statistical and systematic uncertainty added in quadrature, of less than 6%.
Since the uncertainty of the integrated luminosity of the DØ experiment is 6.1%, this means
that the differential, normalized pT (leading jet) measurement has a higher precision in this
range than is possible to achieve for in a DØ measurement of the inclusive Z/γ∗ → e+e−

cross section itself.

9.21 Comparisons with existing measurements

As a cross-check, the measurements presented above are compared with two previously
published Z/γ∗+jets measurements from the DØ experiment: a jet multiplicity measure-
ment [128] in the electron channel analysing a data set corresponding to L = 0.4 fb−1; and a
measurement of pT (leading jet) in the muon channel [129] using L = 1.0 fb−1.
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65 < Mee < 115 GeV, pe
T > 25 GeV, 65 < Mee < 115 GeV

|ye| < 1.1 or 1.5 < |ye| < 2.5

pT (Jet) Bin ctr. # of 1
σZ/γ∗

× dσ
dpT (jet)

σstat σsys
1

σZ/γ∗
× dσ

dpT (jet)
σstat σsys

[GeV ] [GeV ] Events [1/GeV ] [%] [%] [1/GeV ] [%] [%]

20 - 28 23.6 725.4 1.30 × 10−3 3.7 10.2 1.39 × 10−3 3.7 10.9
28 - 40 33.2 310.1 4.23 × 10−4 5.7 5.2 4.51 × 10−4 5.7 6.0
40 - 54 46.1 122.2 1.57 × 10−4 9.1 6.2 1.62 × 10−4 9.1 6.8
54 - 73 61.9 43.8 4.17 × 10−5 15.3 8.5 4.20 × 10−5 15.3 9.0
73 - 200 98.1 21.7 2.96 × 10−6 22.1 7.4 2.82 × 10−6 22.1 8.0

Table 9.10: Summary of the pT (second jet) measurement. For each bin the following infor-
mation is given: bin center; number of events after background subtraction; and
the measured cross section with uncertainties for both selection a and b.

65 < Mee < 115 GeV, pe
T > 25 GeV, 65 < Mee < 115 GeV

|ye| < 1.1 or 1.5 < |ye| < 2.5

pT (Jet) Bin ctr. # of 1
σZ/γ∗

× dσ
dpT (jet)

σstat σsys
1

σZ/γ∗
× dσ

dpT (jet)
σstat σsys

[GeV ] [GeV ] Events [1/GeV ] [%] [%] [1/GeV ] [%] [%]

20 - 28 23.5 122.8 2.22 × 10−4 9.1 14.0 2.33 × 10−4 9.1 15.5
28 - 44 34.2 36.6 4.40 × 10−5 16.6 8.4 4.48 × 10−5 16.6 10.8
44 - 60 50.2 5.8 8.67 × 10−6 42.2 11.0 8.60 × 10−6 42.2 13.0

Table 9.11: Summary of the pT (third jet) measurement. For each bin the following informa-
tion is given: bin center; number of events after background subtraction; and the
measured cross section with uncertainties for both selection a and b.

The jet multiplicity measurement corrects data to the particle level with the selection crite-
ria 75 < Mee < 105 GeV. Jets are defined using R = 0.5 DØ Run II mid-point jets satisfying
pjet

T > 20 GeV and |η| < 2.5. The measurement is normalized to the inclusive Z/γ∗ → e+e−

cross section and multiplied with 103. The present measurements were integrated in pjet
T to

find the jet multiplicities and the two measurements are compared in Tab. 9.12. The two

Jet multiplicity Previous Present

R σstat σsys σstat⊕sys R σstat σsys σstat⊕sys

≥ 0 1000 0 0 0 1000 0 0 0
≥ 1 120.1 3.3 16 16.3 134.4 1.4 5.6 5.8
≥ 2 18.6 1.4 6 6.2 19.9 0.6 1.3 1.4
≥ 3 2.8 0.56 1.4 2.9 2.7 0.2 0.3 0.4

Table 9.12: Comparison of the inclusive jet multiplicities, normalized to the inclusive sample
and multiplied by 103, between the present result and a previously published DØ
result [128].

measurements are found to be in agreement within the quoted uncertainties. The systematic
uncertainties of the present analysis are reduced by about a factor of three compared with
the earlier result. The reduction in statistical uncertainty is larger than expected from the
increase in luminosity, indicating that the (A × ǫ) of the present analysis is higher than for
the earlier result.

Next, comparisons with the measurement of pT (leading jet) in the Z/γ∗ → µµ channel are
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Chapter 9 Measurements of Differential Cross Ssections in Z/γ∗+jets Events

shown. Assuming lepton universality the two measurements are compared by extrapolating
the present result to the binning and particle-level selection used in the muon-channel result,
namely |yµ| < 1.7 and 65 < Mµµ < 115 GeV. The pT spectrum from the muon analysis was
normalized to the Z/γ∗ cross section of 118 pb which is quoted in [129]. The ratio of the
muon-channel result to the present result is given in Fig. 9.40. Only statistical uncertainties
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Figure 9.40: Ratio of the muon-channel measurement of pT (leading jet) to the present re-
sult. The ratio was fitted with a constant, testing the hypothesis that the two
measurements are compatible, giving 1.017 ± 0.018 with a χ2/DOF of 3.8/8.

are taken into account since most of the systematic uncertainties are fully correlated between
the two measurements. The ratio between the two results was fitted with a constant, testing
the hypothesis that the two measurements are compatible, giving 1.017±0.018 with a χ2/dof
of5 3.8/8 indicating that the two measurements agree.

Direct comparisons have not been performed with a CDF measurement [130] of the inclusive
pjet

T spectra6 in Z/γ∗ → e+e− events with N or more jets (N = 1, 2) using a data set
corresponding to L = 1.7 fb−1. In Ref. [130] the CDF result is shown to be in good agreement
with a fixed-order NLO pQCD calculation from mcfm, and the same is true for the present
measurement as is shown in the next Chapter. Based on this one can indirectly conclude that
the two measurements are in agreement. A direct comparison has been performed between
the uncertainties of the two measurements using CDF numbers for pT (N th jet) in events
with at least N jets, N = 1, 2, which are available in Ref. [131]. For the comparison it is a
problem that the CDF measurement uses a finer binning than the present measurement. After
rebinning, the comparison between the respective statistical and systematic uncertainties
are given in Fig. 9.41. It is seen that the statistical uncertainties of the two measurement
are comparable, in spite of the 1.7 times larger data set analysed in the CDF study. The
systematic uncertainties of the present measurements are smaller than in the CDF study in
most bins. For pT (leading jet) below 70 GeV, where both measurements are systematically
limited, the systematic uncertainties of the CDF measurement are 50−90% larger than in the

5The muon result was corrected to particle level using a regularized unfolding program called GURU [107].
This algorithm smooths the ratio of data to simulation, thereby removing fluctuations in the data spectrum.
This effect was not taken into account when computing the χ2/dof.

6In this context inclusive means that the pT of each jet in the event is entered in the same histogram.
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9.22 Measurement of the Differential ∆φ(di-electron, jet) Distribution

present analysis. For the second jet the systematic uncertainties of the CDF measurement are
30−40 larger than in the present analysis while the statistical uncertainties are of comparable
size.
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Figure 9.41: The relative statistical and systematic uncertainties of the CDF measure-
ment [130] compared with those of the measurements presented in this Chapter,
for pT (leading jet) (above) and pT (second jet). While the statistic uncertainties
are of comparable size, the present measurement generally has lower systematic
uncertainties.

9.22 Measurement of the Differential ∆φ(di-electron, jet)
Distribution

It was seen above that alpgen+pythia does not describe the distribution of ∆φ(di-electron,
leading jet) observed in data. By reweighting alpgen+pythia to sherpa at the particle
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Chapter 9 Measurements of Differential Cross Ssections in Z/γ∗+jets Events

level two-dimensionally in pZ
T and ∆φ(Z,leading jet) an improved level of agreement with

data was achieved. The measurement of ∆φ(di-electron, jet) presented below, corrected to
the particle level, can serve as a benchmark for improving the alpgen+pythia model as
well as for a direct comparison of the sherpa model with data.

The ∆φ(di-electron, jet) measurement is normalized to unity since the jet production
rates were already probed through the pjet

T measurements given above. The shape of the
distribution has significantly lower sytematic uncertainties than the distribution itself. The
measurement is presented for the particle-level electron selection pT1 > 25 GeV, |ye| < 1.1
or 1.5 < |ye| < 2.5 and 65 < Mee < 115 GeV. Jets are required to satisfy pT > 20 GeV and
∆R(e,jet) > 0.8.

The migration matrix between ∆φ(di-electron, leading jet) at particle level (∆φptcl) and at
detector level (∆φreco), as predicted by alpgen+pythia, is given in Fig. 9.42 (upper, left).
A significant amount of off-diagonal elements are seen, with a local maximum corresponding
to events where the particle-level ∆φptcl is close to π whereas the reconstructed ∆φreco is
≈ 0. The distribution of ∆φptcl, for events corresponding to four selected bins in ∆φreco, is
given in Fig. 9.42 (upper, right). For events with ∆φreco ≈ π, ∆φreco ≈ ∆φptcl for about
60% of the events. For events with ∆φreco ≈ 0.25 the particle-level and detector-level ∆φ
are in the same bin in less than 20% of the cases, and the distribution has a local maximum
at π, corresponding to the off-diagonal entries seen in the migration matrix. For events
with ∆φreco < 1.0, the probability (matching efficiency) that the observable is defined at
the particle level, i.e. that a particle-level jet exists, is only 30%, as illustrated inf Fig. 9.42
(lower, left). As a consequence of this, the (A× ǫ) becomes large for small values of ∆φreco.

The large amount of off-diagonal elements in the migration matrix has been traced back to
two classes of events: first, events where the direction of flight of the reconstructed di-electron
system does not correspond to that of the particle-level di-electron system. For small values
of pZ

T the two Z-decay electrons have approximately equal pT and the direction of flight
of the reconstructed di-electron system is highly sensitive to the electron energy resolution.
The distribution of ∆φ between the di-electron systems, at the two levels, for various lower
selection criteria on the detector-level pZ

T , is given in in Fig. 9.43. For inclusive events the
reconstructed and true di-electron azimuthal angles deviate by more than one radian in ∼ 10%
of the events, whereas this number is reduced to ∼ 1% for pZ

T > 5 GeV. The latter selection
criterion is adopted in this analysis to guarantee that the direction of flight of the di-electron
system is well defined. The second class of events contributing to the off-diagonal entries in
the migration matrix in Fig. 9.42 arises from the impact of the jet energy resolution on events
which contain two particle-level jets with similar values of pT . As seen in Fig. 9.33 (upper,
center), this is the case for a large fraction of the events containing two or more jets. Due to
the jet energy resolution there is a significant probability that the leading jet at particle level
gives rise to the second leading jet at detector level. In the case of the pjet

T measurements

this gives rise to nearly diagonal entries in the migration matrix since the reconstructed pjet
T

values of the two jets are similar. For the ∆φ measurement, however, the arising entries are in
general off-diagonal. To make the measurement less sensitive to the impact of the jet energy
resolution the observable is redefined as being inclusive in jets. More specifically, in each event
the value of ∆φ(di-electron,jet) for every jet is taken into account, not only for the leading jet.
The corresponding migration matrix, for events with pZ

T > 5 GeV, is given in Fig. 9.44 (left).
The lower pZ

T criterion combined with evaluating ∆φ for all jets in each event leads to a large
reduction in the off-diagonal entries, and correspondingly to a more well-behaved observable.
The particle-level distribution, for each detector-level bin, is peaked at the bin itself (center).
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Figure 9.42: Large off-diagonal elements are seen in the simulated migration matrix between
∆φ(di-electron, leading jet) at the particle level and at the detector level (upper,
left). An alternative presentation of the information contained in the migration
matrix is the distribution of ∆φ at the particle level for those events which con-
tribute to a specific bin at the detector level (upper right). The lower, left figure
shows the probability (matching efficiency) that an event which contributes to
the observable at detector level also contributes at the particle level (labeled
Reco to particle), and vise versa (labeled Reco to particle). It is seen that only
1/3 of the events which has ∆φ < 1 at the detector level has a jet at the particle
level. The (A× ǫ) (lower, left) is therefore large for small values of ∆φ.
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Figure 9.43: For each x and lower pZ
T selection criterion (see legend), the probability that

the difference in azimuthal angle between the particle-level and the detector-
level di-electron system (labeled ∆φ(particle diEM, reco diEM)) in a random
event is larger than the value x. For example, in the case of no pZ

T selection
criterion (labeled Inclusive), ∆φ exceeds 1.0 radian in about 10% of the events.
For pZ

T > 5 GeV the corresponding number is about 1%. This indicates that the
direction of flight of the di-electron system is highly sensitive to the electron pT

resolution for low values of pZ
T and its azimuthal angle is therefore not measurable

for such events. By requiring pZ
T > 5 GeV the azimuthal angle of the di-electron

system is reasonably well measured.
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Figure 9.44: Same distributions as in Fig. 9.42, but for the ∆φ observable being evaluated for
all (di-electron, jet) pairs in each event. The reconstructed di-electron pT was
required to exceed 5 GeV.

The event sample still contains a large number of events with a detector-level ∆φ value below
∼ 1 where the observable is not defined at the particle level, as seen from the low matching
efficiency for detector-level events. Correspondingly, the (A×ǫ) is large for this region of phase
space. To determine where the jets giving rise to the detector-level observable in these events
come from, detector-level jets were matched in ∆R with particle-level particles. A jet is said
to have particle-level confirmation if the sum of the pT of all particles satisfying ∆R(particle,
jet axis) < 0.5 exceeds 1/4 of the value of pjet

T . The ∆φ distribution of detector-level jets
which do not have particle-level confirmation contains a class of jets which are constant in
∆φ, see Fig. 9.45, compatible with jets arising from pile-up pp̄ interactions. Reconstructed
jet candidates from pile-up interactions are seen to constitute a sizable background to the
measurement for small values of ∆φ. To reject jet candidates from pile-up interactions the
difference in z coordinate between the primary interaction vertex (PV) and any vertex from
additional pp̄ interactions was exploited. Reconstructed track candidates were selected using
the selection criteria described in Sect. 9.13.2. A jet is matched to a track if ∆R(jet-axis,
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Figure 9.45: The ∆φ distribution for all reconstructed jets and for those reconstructed jets
for which the pT -sum of all generated particles which satisfy ∆R(particle, jet-
axis) < 0.5 is less than 1/4 of the reconstructed pjet

T value (labeled No ptcl-level
conf).

track) < 0.5. Tracks having a difference in z coordinate of less than 2 cm with respect to
the PV7 are labeled as PV tracks, all other tracks as non-PV tracks. It was validated on an
event-by-event basis that jets without particle-level confirmation tend to be matched with
tracks pointing to a different interaction vertex than the PV. The PV track-pT fraction of
a jet is defined as the ratio of the pT sum of all PV tracks matched to the jet (

∑

pPV
T,track)

to the pT sum of all tracks matched to the jet (
∑

pall
T,track). In Fig. 9.46 the distribution of

∑

pPV
T,track/

∑

pall
T,track is shown as function of

∑

pall
T,track for simulated jets without (left) and

with (right) particle-level confirmation. To reject jets from pile-up interactions the selection
criteria

∑

pPV
T,track/

∑

pall
T,track > 0.7 and

∑

pall
T,track > 5 GeV were applied. The selection

efficiency is ∼ 90% for simulated jets with particle-level confirmation against ∼ 2% for jets
lacking such confirmation. The application of this anti pile-up jet selection removes the class
of jets which lacks particle-level confirmation and which is independent of ∆φ, as seen in
Fig. 9.47.

The migration matrix for events with pZ
T > 5 GeV and only jets passing the anti-pile-up

selection being taken into account is given in Fig. 9.44. It is seen that the removal of jets
which are not compatible with arising from the primary interaction vertex leads to a matching
efficiency for detector-level events which is above 0.6 for all values of ∆φ. The (A× ǫ) which
is close to unity, meaning that the observable is almost insensitive to detector effects.

To determine the dependency of the (A× ǫ) for ∆φ(di-electron,jet) on the event generator
model, this factor is evaluated for the alpgen+pythia once with no kinematic reweighting,
and once with the two-dimensional pZ

T and ∆φ(Z,leading jet) reweighting to sherpa and
then one-dimensional pZ

T reweighting to data. The corresponding level of agreement with
data at the detector level is shown in Fig. 9.49. The central prediction of (A× ǫ) is evaluated
with the kinematic reweighting applied. The difference between applying and not applying

7For comparison, the resolution of the z-component of the primary vertex reconstruction is about 35µm.
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Figure 9.46: The correlation between
∑

pall
T,track and

∑

pPV
T,track/

∑

pall
T,track for jets without

(left) and with (right) particle-level confirmation.
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Figure 9.47: The ∆φ distribution for all reconstructed jets and for those without particle-level
confirmation after the application of the anti pile-up jet selection.
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Figure 9.48: Same distributions as in Fig. 9.42, but for the ∆φ observable being evaluated for
all (di-electron, jet) pairs in each event, and only jets which are compatible with
stemming from the primary interaction taken into account. The reconstructed
di-electron pT was required to exceed 5 GeV. The particle-level and detector-level
observable is seen to be highly correlated. In addition, the matching efficiency
is of comparable size both for detector-level and particle-level events.
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9.22 Measurement of the Differential ∆φ(di-electron, jet) Distribution
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Figure 9.49: alpgen+pythia with and without kinematic reweighting compared with data.

the reweighting is assigned as a systematic uncertainty of the measurement. Additional
sources of systematic uncertainty to the factor (A× ǫ) arise from varying the jet energy scale
and resolution and jet identification efficiency by ±1σ. The resulting variations in (A × ǫ)
for ∆φ(di-electron, jet) are shown in Fig. 9.50. The total upwards (downwards) systematic
uncertainty of the measurement is defined as the sum in quadrature of the positive (negative)
variations for each bin. The measurement is summarized in Tab. 9.13, with the integral of
the ∆φ(di-electron, jet) distribution being normalized to unity. This choice of normalization
significantly reduces the sensitivity of the measurement to the uncertainty of the jet energy
scale. The measurement is statistically limited in all bins of the measurement. In the next
Chapter the measurement is compared with the predictions of various commonly used event
generator models.
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Chapter 9 Measurements of Differential Cross Ssections in Z/γ∗+jets Events

Bin σ−1dσ/d∆φ σstat σup
sys σdown

sys σReW σUp
JES σDown

JES σUp
JER σDown

JER σUp
ID σDown

ID

Range Radian−1 % % % % % % % % % %

0 – π/15 2.71 × 10−2 14.7 1.4 -8.0 -7.5 1.3 -2.9 0.3 -0.1 -0.4 0.4
π/15 – 2π/15 3.30 × 10−2 13.9 4.8 -2.7 3.3 3.5 -2.7 0.2 0.1 -0.3 0.3
2π/15 – 3π/15 3.64 × 10−2 13.7 3.8 -1.4 0.1 3.7 -1.4 0.5 0.4 -0.4 0.4
3π/15 – 4π/15 3.77 × 10−2 13.2 4.7 -2.8 4.3 1.8 -2.8 0.2 -0.2 0.0 -0.0
4π/15 – 5π/15 4.26 × 10−2 12.6 6.3 -1.7 6.0 2.0 -1.7 0.4 0.1 -0.2 0.2
5π/15 – 6π/15 5.10 × 10−2 11.5 3.1 -1.6 2.2 2.1 -1.6 -0.1 -0.3 -0.3 0.3
6π/15 – 7π/15 5.94 × 10−2 10.5 3.8 -2.0 2.2 2.9 -2.0 0.8 0.5 -0.4 0.4
7π/15 – 8π/15 7.56 × 10−2 9.2 1.2 -3.3 -2.3 1.1 -2.4 0.1 0.1 -0.5 0.5
8π/15 – 9π/15 8.36 × 10−2 9.1 3.0 -1.8 2.4 1.7 -1.8 0.2 -0.0 -0.2 0.2
9π/15 – 10π/15 1.29 × 10−1 7.3 3.3 -1.2 0.9 3.0 -1.2 0.8 0.6 -0.7 0.7
10π/15 – 11π/15 1.85 × 10−1 6.2 2.2 -1.7 1.5 1.6 -1.7 0.2 0.0 -0.2 0.2
11π/15 – 12π/15 3.00 × 10−1 4.8 1.2 -1.5 1.1 0.5 -1.3 -0.1 -0.1 0.6 -0.6
12π/15 – 13π/15 5.21 × 10−1 3.7 3.9 -0.6 3.7 1.1 -0.6 0.2 0.1 -0.1 0.1
13π/15 – 14π/15 9.44 × 10−1 2.7 3.1 -0.4 3.1 -0.1 -0.3 -0.1 -0.1 0.3 -0.3

14π/15 – π 2.22 × 100 1.9 0.9 -1.8 -1.6 -0.8 0.9 -0.1 0.0 -0.1 0.1

Table 9.13: Summary of the measurement of the shape of the jet-inclusive ∆φ(di-electron,jet)
distribution for pZ

T > 5 GeV. The table the various systematic uncertainties
arising from the kinematic reweighting of the simulated event sample (σReW ),
from the jet energy scale (σJES), from the jet energy resolution (σJER) and from
the jet identification efficiency (σID).
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Figure 9.50: The (A × ǫ) for the jet-inclusive ∆φ(di-electron, jet) distribution. The distri-
bution is given for simulation with kinematic reweighting (labeled Central) and
with no such reweighting (ReW). In addition, the (A× ǫ) is given for the jet en-
ergy scale and resolution varied by ±1σ, and for the jet identification efficiency
varied by −1σ.
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Chapter 10

Comparing Theory Predictions with the
Measurements

Below, the measurements presented in the previous chapter are compared with the predictions
of the various theory models described in Chapter 3. First, the predictions of fixed-order cal-
culations at leading and next-to-leading order in αs are compared with the pjet

T measurements

as a test of perturbative QCD. Next, the pjet
T and ∆φ(di-electron, jet) measurements are used

as the basis for a detailed, comparative study of the particle-level predictions of the sherpa,
alpgen+pythia, alpgen+herwig, mc@nlo, pythia and herwig event-generator models.
In addition, the discrepancies between pythia and data for the distributions of ∆φ(jet,jet)
seen in the detector-level study presented in Chapter 7 are interpreted using particle-level
comparisons between the various event-generator models.

10.1 Theory Predictions

The theoretical aspects of the various simulation codes were described in detail in Chapter 3;
only technique details are covered here. All theory predictions were generated using com-
monly available codes provided by the authors of the respective tools. The PDFs used were
the CTEQ 6.1M [49] set1, accessed through the LHAPDF interface [132]. The evolution of
αs was performed using the NLO evolution equation.

10.1.1 sherpa

The sherpa samples were generated using version 1.1.1 of the code. Up to three QCD
partons were included in the matrix-element calculations. The configuration parameters
were adopted from the example configuration file in the directory in the sherpa release
called Tevatron1800. The matching between the matrix-element and parton-shower parts of
the algorithm was defined by setting the parameters of the kT jet algorithm to pcut

T = 15 GeV
and D = 1.0 (see Sect. 3.7.2). The default choices of µF and µR were taken to be those
defined by the CKKW algorithm. A patch [104] was applied to the code to correct for a bug
which caused variations in µF to not be propagated properly to the LHAPDF library.

1This set of PDFs is defined using NLO cross section calculations and the NLO evolution of αs. For consis-
tency, the LO mcfm calculation presented below should be made using a LO PDF set. For this calculation
it was tested to use the LO CTEQ 6LL set together with the LO evolution of αs, but only minor differ-
ences were seen with respect to using CTEQ 6.1M and the NLO αs. Below, the latter PDF is used for all
predictions.
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Chapter 10 Comparing Theory Predictions with the Measurements

10.1.2 alpgen+pythia and alpgen+herwig

Release version v2.13 of alpgen was used to generate samples using either pythia v6.325
using tune QW [133] or herwig v6.510 + jimmy v4.31 to provide the parton shower al-
gorithm and modeling of hadronization and the underlying event. For jimmy the default
configuration parameters were used. Up to four QCD partons were included in the matrix-
element calculations, and the matching between matrix element and parton shower partons
were defined by the cuts pT > 15 GeV and ∆R = 0.4. The nominal value of µF was taken

to be µF =
√

M2
Z + p2

T,Z , with MZ and pZ
T denoting the mass and transverse momentum of

the Z/γ∗ boson. The nominal value of µR was defined individually for each parton splitting
using the CKKW prescription.

10.1.3 pythia

pythia delivers two different event generator models: one model based on a Q2-ordered
parton-shower algorithm (referred to as the old model below), and one model based on a pT -
ordered parton-shower algorithm (referred to as the new model below). For the former model
the configuration parameters were set according to tune QW, and for the latter according to
tune S0 [134, 135].

10.1.4 herwig+jimmy

The herwig sample was generated using v6.510 of the code together with jimmy v4.31 with
default configuration parameters.

10.1.5 mc@nlo+jimmy

The mc@nlo sample was generated using release v3.3. herwig v6.510 provided the par-
ton shower and hadronization models, whereas jimmy v4.31 provided simulation of multiple
parton interactions. All configuration parameters were set to their default values.

10.1.6 mcfm

mcfm v5.3 was used to produce fixed-order pQCD NLO (LO) predictions for the two (three)
leading pjet

T spectra for Z/γ∗(→ e+e−)+jets. The internal cone-jet algorithm in mcfm was
modified to correspond to the DØ Run II Mid-Point algorithm following Ref. [136]. The
central predictions were generated with the factorization and renormalization scales set to

µF = µR =
√

M2
Z + p2

T,Z . The PDF uncertainties were estimated according to the Hessian

method [124]. For the two leading jets, they vary from 5% at low pT to 10% at high pT , and
for the third jet they are found to be (5–15)%.

The mcfm predictions were multiplied by correction factors accounting for multiple parton
interactions (CMPI) and hadronization (CHad) before being compared to the measurements.
The correction factors CMPI and CHad were estimated using inclusive Z/γ∗(→ e+e−) event
samples generated with Q2-odered pythia using Tune QW, pT -ordered pythia using Tune
S0 [134, 135], herwig+jimmy, alpgen+pythia, as well as sherpa. Each pjet

T spectrum was
evaluated for each generator both with the hadronization and multiple parton interaction
model turned off (sample a), with only the multiple parton interaction model turned on
(sample b), and with both models turned on (sample c). For each generator the ratio of the
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10.2 Comparing the Predictions with the pjet
T Measurements

Table 10.1: Correction factors for multiple parton interactions (CMPI) and hadronization

(CHad) for 1
σZ/γ∗

× dσ
dpT (1st jet) .

pT bin CMPI ± (stat) ± (sys) CHad ± (stat) ± (sys)
[GeV]

20–28 1.08 ± 0.00+0.07
−0.04 0.89 ± 0.00+0.04

−0.03

28–40 1.04 ± 0.00+0.02
−0.02 0.90 ± 0.00+0.03

−0.01

40–54 1.02 ± 0.00+0.01
−0.01 0.90 ± 0.00+0.02

−0.00

54–73 1.02 ± 0.01+0.00
−0.02 0.92 ± 0.01+0.01

−0.03

73–95 1.01 ± 0.01+0.03
−0.01 0.93 ± 0.01+0.01

−0.02

95–120 1.02 ± 0.02+0.00
−0.03 0.91 ± 0.02+0.03

−0.00

120–154 1.04 ± 0.03+0.00
−0.07 0.92 ± 0.02+0.05

−0.03

154–200 1.03 ± 0.05+0.02
−0.06 0.91 ± 0.04+0.04

−0.06

200–300 1.01 ± 0.09+0.04
−0.05 0.92 ± 0.08+0.05

−0.06

Table 10.2: Correction factors for multiple parton interactions (CMPI) and hadronization

(CHad) for 1
σZ/γ∗

× dσ
dpT (2nd jet)

.

pT bin CMPI ± (stat) ± (sys) CHad ± (stat) ± (sys)
[GeV]

20–28 1.15 ± 0.01+0.06
−0.10 0.81 ± 0.01+0.07

−0.00

28–40 1.10 ± 0.01+0.00
−0.07 0.83 ± 0.01+0.05

−0.00

40–54 1.07 ± 0.02+0.00
−0.06 0.85 ± 0.01+0.06

−0.00

54–73 1.04 ± 0.03+0.00
−0.07 0.87 ± 0.03+0.07

−0.01

73–200 1.05 ± 0.05+0.00
−0.08 0.83 ± 0.04+0.18

−0.00

observable in sample b to that in sample a specifies CMPI. Correspondingly, the ratio of the
observable in sample c to that in sample b specifies CHad. The central values of CMPI and CHad

given in Tables 10.1, 10.2 and 10.3 correspond to the predictions of pythia using tune QW for
the first, second and third pjet

T spectrum, respectively. The maximal upwards and downwards
differences between pythia Tune QW and the other four models are quoted as systematic
uncertainties. A reasonable level of agreement between the various event generators models
is seen, indicating that the correction for hadronization and multiple parton interactions is
well understood.

10.2 Comparing the Predictions with the pjet

T Measurements

The measurements of the cross section for Z/γ∗(→ e+e−)+N -jet production (N = 1, 2, 3),
differential in the pT of the N th jet and normalized to the inclusive cross section, are shown in
Fig. 10.1 together with the NLO (LO) predictions from mcfm for N = 1, 2 (N = 3). In this
and later figures the uncertainty bars attached to the data points represent the statistical and
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Chapter 10 Comparing Theory Predictions with the Measurements

Table 10.3: Correction factors for multiple parton interactions (CMPI) and hadronization

(CHad) for 1
σZ/γ∗

× dσ
dpT (3rd jet)

.

pT bin CMPI ± (stat) ± (sys) CHad ± (stat) ± (sys)
[GeV]

20–28 1.15 ± 0.02+0.00
−0.07 0.76 ± 0.01+0.08

−0.00

28–44 1.10 ± 0.03+0.05
−0.04 0.81 ± 0.03+0.05

−0.00

44–60 1.11 ± 0.10+0.04
−0.10 0.74 ± 0.07+0.19

−0.00

systematic uncertainties of the measurement combined in quadrature. The mcfm predictions
are corrected to the particle level using the product (CMPI)× (CHad) from Tables 10.1-10.3.

10.2.1 Fixed-order Calculations at LO and NLO from mcfm

To facilitate a quantitative comparison between data and the theory predictions, the ratios of
data and each prediction to a reference prediction is studied. The reference prediction is taken

to be that of NLO (LO) mcfm for the two leading (third) jets, with µF = µR =
√

M2
Z + p2

T,Z .

In Fig. 10.2 the resulting ratios are shown for data and the NLO mcfm prediction for the
nominal scale choice as well as for both µF and µR varied up and down by a factor of two
(keeping µF = µR). Reasonable agreement is seen between the NLO mcfm predictions and
the measurements, both for the leading and the second leading jets. The variation in scales
leads to a variation in the predicted differential cross section of ∼ 1.1 both for the leading and
second leading jet. The central LO predictions are about 20− 30% below the measurements,
but the shapes of the distributions are well described (see Fig. 10.3). The scale uncertainty
is about 1.2 / 1.4 / 1.6 for the first / second / third jets, indicating a significantly lower
predictive power for the LO calculation than for the NLO calculations.

10.2.2 sherpa and alpgen+pythia

In contrast to parton-level predictions from fixed-order calculations, the particle-level pre-
dictions of event-generator models can be used as input for a detailed simulation of the
experimental detector setup. A good understanding of the detector performance is essential
for an accurate interpretation of experimental data samples. It is therefore of great impor-
tance to both measurements and searches for new particles to have access to reliable particle-
level event-generator models. As described in Chapter 3, the sherpa and alpgen+pythia

event generator models combine tree-level 2 → n matrix-element predictions with a parton-
shower algorithm, aiming to deliver more accurate predictions for events with one or more
QCD jets than achievable using a parton-shower algorithm alone. Both event generators are
found to give a reasonable description of the shapes of the measured pjet

T spectra in data,
as seen in Figs. 10.4 and 10.5. However, neither generator describes the normalizations of
the distributions correctly, with sherpa (alpgen) predicting more (less) jets than observed
in data. Given that sherpa and alpgen use LO tree-level matrix-element calculations to
describe hard, well-separated jets, one would naively expect these generators to reproduce
the pjet

T spectra predicted by LO mcfm. This is indeed the case for alpgen+pythia, but
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T Measurements
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Figure 10.1: Comparison between the measured pjet
T spectra and the predictions of mcfm

for pT (N th jet) for Z/γ∗(→ e+e−)+N -jet production, N = 1, 2, 3. The mcfm

predictions are corrected for hadronization and the underlying event.
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Figure 10.2: Ratios of the two leading pjet
T spectra measured in data and predicted by NLO

mcfm to the reference prediction (NLO mcfm, central scales). Three ratios
are shown for mcfm, corresponding to the nominal scale choice µF = µR =
√

M2
Z + p2

T,Z , as well as to this choice multiplied by 1/2 and 2.
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Figure 10.3: Ratios of the pjet
T spectra measured in data and of those predicted by LO mcfm

to the reference predictions. For LO mcfm three ratios are shown, corresponding

to the nominal scale choice µF = µR =
√

M2
Z + p2

T,Z , as well as to this choice

multiplied by 1/2 and 2.

sherpa predicts significantly more jets than LO mcfm. As expected, the scale uncertainties
of both event generators are comparable to those of LO mcfm. The alpgen code also offers
the possibility of using herwig+jimmy instead of pythia for providing the parton shower,
hadronization model and description of the underlying event, but both choices are found to
produce similar predictions (see Fig. 10.5).

10.2.3 mc@nlo

An alternative method for combining matrix-element calculations with a parton-shower al-
gorithm is implemented in the mc@nlo generator. This generator combines a NLO matrix-
element calculation for the core process, in this case qq̄ → Z/γ∗ → e+e−, with a parton-shower
algorithm. In other words, the properties of the leading jet is generated with LO matrix-
element prediction, whereas sub-leading jets are described by the parton-shower algorithm.
As seen in Fig. 10.6 the mc@nlo predictions deviate significantly from data for all three pjet

T

spectra. For the leading jet mc@nlo predicts a factor of 0.8 to 0.5 less jets than observed in
data, depending on pjet

T . For the sub-leading jets very large disagreements are seen, both in
shape and normalization. The origins of these discrepancies are discussed below.

10.2.4 pythia and herwig

Event generators relying on a parton-shower algorithm include, most notably, pythia and
herwig. While originally delivering pure parton-shower predictions, current version of both
generators by default reweight the leading initial-state parton-shower emission for selected
processes according to LO matrix-element predictions2. The predictions of the Q2-ordered
pythia model are compared with data in Fig. 10.7, both for the central scale choices of
µF = MZ , µR = pT , where pT denotes the relative transverse momentum of the 1 → 2

2For pythia, such reweighting is offered for the s-channel production of a single gauge or Higgs boson [50].
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Figure 10.4: Ratios of the measurements and of the predictions of sherpa to the reference
predictions from mcfm. For sherpa three ratios are shown, corresponding to
the nominal scale choice, as well as to the nominal choice of factorization and
renormalization scales, as well as to the nominal scale choice multiplied by 1/2
and 2.
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Figure 10.5: Ratios of the pjet
T measurements and of the predictions of alpgen+pythia to the

reference predictions from mcfm. For alpgen+pythia three ratios are shown,
corresponding to the nominal choice of factorization and renormalization scales,
as well as to the nominal scale choice multiplied by 1/2 and 2.
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Figure 10.6: Ratios of the pjet
T measurements and of the predictes of mc@nlo to the reference

predictions from mcfm.

splitting generated by the parton shower, and for both scales varied by a factor of two up
and down. For the leading jet the pythia prediction is comparable to that of LO pQCD,
modulo a minor disagreement in shape. This agrees with the fact that the leading emission
has been reweighted to reproduce a LO Z/γ∗+parton calculation. For the sub-leading jets
significant disagreements with both data and the NLO mcfm predictions are seen, both for
normalization and shape. This is in agreement with what one would expect from the limited
validity of the soft/collinear approximation for events with several well-separated jets with
large values of pT . The newer, pT -ordered pythia model is found to offer an improved
description of the leading jet (see Fig. 10.8). Since the leading pjet

T spectrum is determined by
the the matrix-element reweighting algorithm rather than by the parton-shower algorithm,
it is reasonable to assume that the improved description of the leading pjet

T spectrum is due
to a modification of the former algorithm rather than due to the change of parton-shower
evolution variable. For the sub-leading pjet

T spectra no improvement over the Q2-ordered
model is seen.

The herwig event generator model, using an angular-ordered parton-shower algorithm,
offers predictions which are in general similar to those of pythia (see Fig. 10.9). One no-
table feature is a change of slope in the pT spectrum of the leading jet at approximately
pT = 50 GeV. Below this value herwig agrees well with data, whereas above this value the
prediction is similar to that of the Q2 pythia model. This feature can be traced back to the
technical details of the matrix-element reweighting used in herwig [137]: different reweight-
ing schemes are used for small and large values of pjet

T , and for Z/γ∗ → e+e− production the

transition region is at pjet
T ≈ 50 GeV. This illustrates that the pT (leading jet) spectrum for

this class of generators is determined by the details of the matrix-element reweighting, not
by the parton-shower algorithm.

10.2.5 The Relationship between mc@nlo, sherpa, pythia and herwig

It can be argued that pythia and herwig should reproduce mc@nlo for pT (leading jet)
since all three are formally based on LO matrix-element predictions for this observable. The
same is true for sherpa (or alpgen+pythia) in case only up to one QCD parton is included
in the matrix-element calculation (labelled Njet = 1 below). In Fig. 10.10 the predictions
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Figure 10.7: Ratios of the pjet
T measurements and of the predictions of Q2-ordered pythia

using tune QW to the reference prediction from mcfm. Three ratios are shown
for pythia, corresponding to the nominal choice of factorization and renormal-
ization scales and to the nominal scale choice multiplied by 1/2 and 2.
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Figure 10.8: Ratios of the pjet
T measurements and of the predictions of pT -ordered pythia

using tune S0 to the reference prediction from mcfm.
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Figure 10.9: Ratios of the pjet
T measurements and of the predictions of herwig+jimmy to the

reference predictions from mcfm.
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Figure 10.10: Ratios of the pjet
T measurements and of the predictions of several different event-

generator models (see legend) to the reference predictions from mcfm. An
interpretation of the relative performance of the different models is given in the
main text.

of herwig and the two pythia models are compared with both mc@nlo and sherpa with
Njet = 1. To highlight the impact of the matrix-element reweighting in pythia, predictions
are also shown with this reweighting turned off, with the starting-scale of the shower set
to M2

Z . Several observations can be made: first, one class of event generator models which

are all in reasonable agreement with each other, for all three pjet
T spectra, consists of the

matrix-element reweighted herwig and pythia models as well as sherpa with Njet = 1.
Second, disabling the matrix-element reweighting in pythia leads to a dramatic reduction
in the amount of events with one or more hard jets. Third, mc@nlo is found to be in
reasonable agreement with the former class of event generator model for the leading jet,
but accurately reproduces pythia without reweighting for the two sub-leading jets. This
behaviour is assumed to reflect that both of these models uses M2

Z as starting scale for the
parton-shower algorithm, thereby placing a strict upper limit on the pT values of the jets
generated by the parton-shower algorithm. In contrast, the pythia and herwig models,
with matrix-element reweighting turned on, uses the full center-of-mass energy as starting
scale. The leading emission is modified to reproduce LO matrix-element predictions, but
sub-leading emissions are not modified, meaning that a larger pjet

T values can be generated by
these models for the sub-leading jets than is the case for mc@nlo. The sherpa model sets
the parton-shower starting scale for each parton generated according to the matrix-element
calculation to the scale where the parton was emitted, as defined through the kT clustering
part of the CKKW algorithm. For parton multiplicities beyond the maximal number of
partons included in the matrix-element calculations (Njet), the veto of hard, well-separated
parton-shower emissions is disabled. For Njet = 1 this is seen to give predictions which are

similar to those of pythia and herwig for all three pjet
T spectra.
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Figure 10.11: Ratios of the measurements and the predictions from alpgen+pythia to the
reference predictions from mcfm. The various alpgen+pythia predictions
correspond to the nominal choice of renormalization scale, as well as to the
nominal choice multiplied with a factor of 0.5, 0.4, 0.3, 0.2 or 0.1.

10.2.6 Adjusting the parameters of alpgen+pythia and sherpa to describe
the pjet

T
Measurements

The systematic uncertainties of the sherpa and alpgen+pythia predictions arising from
variations of the unphysical parameters of the models were evaluated in Ref. [41]. Given
the pjet

T spectra measured in data, it is useful to study to which extent the parameters of
the models can be modified in order to improve the agreement with data. This process
is ofter referred to as tuning the parameters of the model. One adjustable parameter of all
perturbative calculations is the renormalization scale. Due to the running of αs, a lower value
of µR implies a larger value of αs, and consequently higher jet cross sections. The predictions
for alpgen+pythia and sherpa for different choices of µR are given in Figs. 10.11 and 10.12,
respectively. For alpgen+pythia a good, simultaneous agreement with all three measured
pjet

T spectra is achieved by scaling the nominal value of µR by a factor of ∼ 0.3. For sherpa,
a comparable level of agreement is reached by multiplying the nominal µR by a factor of
approximately 2, but some residual disagreements are seen in the shape of the pT spectrum
of leading jet.

The CKKW and MLM algorithms both contain two parameters which separates the parton
which are generated according to matrix-element calculations from those which are gener-
ated by the parton-shower algorithm (see Sects. 3.3.2 and 3.3.2). In the case of CKKW, as
implemented in sherpa, this boundary is defined using the kT jet algorithm which contains
two parameters pcut

T and D (defined in Sect. 3.7.2). These parameters offer an alternative
to the renormalization scale when trying to tune the event generator models to agree with
data. The variation in the pjet

T spectra arising from reducing D from the default value of 1.0
to 0.75 and 0.5 is found to be negligible (see Fig. 10.13). Varying the pcut

T parameter from the
nominal value of 15 GeV to 10 GeV and 20 GeV leads to a change in normalization for the
two leading pjet

T spectra on the 10% level, as seen in Fig. 10.14. Choosing a pcut
T value which

is larger than 20 GeV results in significant changes in both normalization and shape. Notice
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Figure 10.12: Ratios of the measurements and of the predictions from sherpa to the refer-
ence predictions from mcfm. The various sherpa predictions correspond to
the nominal choice of renormalization scale, as well as to the nominal choice
multiplied with a factor of 2 and 4.

that this is to be expected since a large pcut
T value implies that well-separated, high-pT par-

tons are generated by the parton-shower algorithm, and for such partons the soft/collinear
approximation of the parton shower is not a good choice. The predictions corresponding
to large values of pcut

T are therefore not meant to reflect the underlying uncertainty of the
model and should be interpreted merely as an illustration of the behaviour of the CKKW
algorithm in the limit of large pcut

T . For pcut
T = 100 GeV the predicted spectrum is found to be

similar to that of pythia without matrix-element correction applied and the parton-shower
starting scale set to M2

Z . Starting from about pT = 100 GeV the partons are generated
according to the matrix-element calculation, and consequently there is a rapid increase in
the ratio to mcfm. This illustrates that the value of pcut

T should not exceed the range where
the soft/collinear parton-shower approximation delivers reasonable predictions. Whereas the
value pcut

T = 60 GeV gives an improved level of agreement with the NLO mcfm predictions

for the leading pjet
T spectrum, large discrepancies are seen for the sub-leading jets. This indi-

cates that pcut
T is a less suited parameter for tuning the event generator to reproduce data or

higher-order calculations than the renormalization scale parameter.

10.3 Comparing the Predictions with the ∆φ(di-electron, jet)
Measurements

While fixed-order calculations were found to be well suited for predicting pjet
T spectra, the

same is not true for the ∆φ(di-electron, jet) observable. For ∆φ ≈ π the contributions of
logarithmically enhanced higher-order terms corresponding to multiple emission of soft gluons
become important, and an analytical resummation or parton-shower algorithm is necessary
to describe this region of phase space. The shape of the ∆φ spectrum measured in data is
represented graphically in Fig. 10.15, together with the prediction from sherpa, and good
agreement is seen. Ratios of data and various event generator predictions with respect to
the sherpa predictions are presented in Fig. 10.16. For sherpa and alpgen+pythia the
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Figure 10.13: Ratios of the measurements and of the predictions from sherpa to the reference
predictions from mcfm. The various sherpa predictions were generated using
the nominal choice of the matching parameter D = 1.0, as well as D = 0.75
and D = 0.5.
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Figure 10.14: Ratios of the measurements and of the predictions from sherpa to the reference
predictions from mcfm. The various sherpa predictions were generated using
the nominal choice of the matching parameter pcut

T = 15 GeV, as well as the
values 10 GeV, 20 GeV, 30 GeV, 60 GeV, 70 GeV, 80 GeV and 100 GeV. The
values above ∼ 30 GeV are outside of the range of reasonable values for this
parameter and are included as an illustration of the CKKW algorithm only (see
main text).

157



Chapter 10 Comparing Theory Predictions with the Measurements

 (di-electron, jet)  [radians]  φ ∆
0 0.5 1 1.5 2 2.5 3

   
[1

 / 
ra

di
an

]  
 

 φ
 d

 
|

je
t

σ
d  × | 

je
t

σ |
1

 

-110

1

-1D0 Run II data, 1.04 fb
SHERPA

Figure 10.15: The distribution of ∆φ(di-electron, jet) (normalized to unity) as measured in
data and as predicted by sherpa.

distributions are also shown for the default values of µF and µR shifted up and down by a
factor of two. It is seen that in particular the region close to π is sensitive to the scale choice.
In contrast to the pjet

T spectra, the nominal scale choice gives the best agreement between
sherpa and data. The spectrum predicted by alpgen+pythia is more strongly peaked at
π than the one measured in data. The region close to π is described by events where only
one parton was included in the matrix-element calculation, as seen in Fig. 10.17. At the
matrix-element level such events all have δφ = π, but the parton-shower algorithm, as well
as to a smaller extend the hadronization and intrinsic pT models, lead to values samller than
π.

For the region ∆φ < 2.5, which is populated mostly by events with two parton included
in the matrix-element calculation, the shape of the alpgen+pythia prediction agrees well
with data. Consequently, the source of the discrepancies between data and alpgen+pythia

is most likely to be found in the parton-shower algorithm rather than in the matrix-element
part of the event generator model. Varying µF and µR down by a factor of two results in an
improved level of agreement with data. The two pythia models, herwig and mc@nlo all
show disagreements in shape with respect to data over the whole range [0, π].

10.4 The Sensitivity of ∆φ(jet,jet) to Jets from Multiple Parton
Interactions

In Chapter 7 a detector-level comparison of sherpa and Q2-ordered pythia with data
for the distribution of the difference in azimuthal angle between the two leading jets in
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Figure 10.16: Ratios of the ∆φ(di-electron,jet) measurement and of the predictions of sev-
eral different event-generator models (see legend) to the reference prediction
(sherpa, central scales). An interpretation of the relative performance of the
different models is given in the main text.
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Figure 10.18: The ∆φ(jet,jet) spectrum (normalized to unity) as predicted by several different
event generator codes without (left) and with (right) the simulation of multiple
parton interactions. A prominent excess of events at ∆φ = π is seen to be
generated by the multiple parton interaction model for Q2-ordered pythia.
This peak was not seen in the ∆φ(jet,jet) spectrum reconstructed in data (see
Fig. 7.12).

Z/γ∗ → e+e−+jets events was presented (see Fig. 7.12). In the pythia spectrum a signif-
icant excess of events with a ∆φ(jet,jet) ≈ π was seen, a feature which was not present in
the spectrum reconstructed in data, nor in the predictions from sherpa. In Fig. 10.18 the
∆φ(jet,jet) distribution as predicted by the following event generators is shown: Q2-ordered
pythia, pT -ordered pythia, alpgen+pythia (Q2-ordered), sherpa and herwig. For each
generator the spectrum was generated with the simulation of multiple parton interactions
both activated and deactivated. The excess of events with ∆φ(jet,jet) ≈ π is only seen in the
two samples generated using the multiple parton interaction model of Q2-ordered pythia.
Based on this, and on the detector-level comparisons between pythia and data, it can be
concluded that the multiple parton interaction model implemented in Q2-ordered pythia

is in disagreement with experimental data. In contrast to the multiple parton interactions
model used in sherpa, herwig and in the pT -ordered pythia model, the multiple parton in-
teraction model used in Q2-ordered pythia generates multiple parton interactions according
to 2→2 QCD processes without the inclusion of higher-order corrections via a parton-shower
algorithm [50]. Consequently, all parton pairs generated by this multiple parton interaction
model are generated with ∆φ(jet,jet) = π, thereby explaining the large excess of events seen
in the bin corresponding to this value.
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Chapter 11

From the Tevatron to the LHC

At the time of writing the Tevatron accelerator still delivers the particle collisions with the
highest center-of-mass energy in the world. However, in the near future this distinction is
expected to belong to the Large Hadron Collider (LHC) located at the boundary between
France and Switzerland, close to Geneva. In the present Chapter it is highlighted how the
differential pjet

T spectra for the associated production of Z/γ∗ and jets at the LHC differs from
those at the Tevatron. In addition, it is investigated how the predictions of fixed-order NLO
calculation as well as from sherpa and alpgen+pythia extrapolate from from Tevatron pp̄
collisions at 1.96 TeV to LHC pp collisions at 10 TeV.

11.1 pjet
T spectra

The fixed-order NLO prediction for the jet-inclusive Z/γ∗ → e+e− cross section, as predicted
by mcfm using the CTEQ 6.1M PDFs, is 1300+39

−26 pb, where the quoted uncertainties corre-
spond to a variation of the factorization and renormalization scales by a factor of two around

the nominal value
√

M2
Z + p2

T,Z . This is an increase by a factor of ∼ 5 compared with the

corresponding prediction for the Tevatron which is 238.6+3.7
−2.6 pb. The increase in cross sec-

tion is even larger for events which contain one or more hard jets. In Fig. 11.1 the predicted
1

σZ/γ∗
× dσ

dpT
distributions for the three leading jets in Tevatron and LHC collisions are com-

pared. The LHC (Tevatron) predictions are normalized using the inclusive Z/γ∗ → e+e−

cross section σZ/γ∗ predicted for the LHC (Tevatron). It is seen that the fraction of inclu-
sive Z/γ∗ → e+e− events which contains at least one (two / three) jets with pT larger than
∼ 200 GeV (∼ 100 GeV / ∼ 40 GeV) is expected to be a factor of ten larger at the LHC
than at the Tevatron. This large increase in the jet cross sections means that an accurate
modeling of Z/γ∗+jets production will be even more important at the LHC than at the
Tevatron. Given the success of NLO calculations in reliably predicting both the shape and
normalization of the two leading pjet

T spectra at the Tevatron, the recent appearance of NLO
calculations for W+3-jet production [21, 22, 23] is an important milestone. The extension of
these calculations to Z+3-jet production is expected to be straight forward, and it is fore-
seen [138] that such a calculation will soon be compared with the pT (third jet) measurement
presented in this thesis.

The pjet
T spectra shown in Fig. 11.1 are the parton-level predictions from mcfm, with

no correction for hadronization or the underlying event applied. Whereas hadronization is
assumed to be well understood in terms of extrapolation from the Tevatron to the LHC,
this is not the case for multiple parton interactions (see Chapter. 3). In Fig. 11.2, the
sherpa predictions for the normalized pjet

T spectra for LHC (Tevatron) are presented as
a ratio to the mcfm prediction for LHC (Tevatron) calculated at the NLO (LO) for the
two leading jets (third jet). For both colliders samples were generated with the multiple

161



Chapter 11 From the Tevatron to the LHC

 jet : st1  jet : nd2  jet : rd3

MCFM NLO at Tevatron MCFM NLO at Tevatron MCFM LO at Tevatron

MCFM NLO at LHC MCFM NLO at LHC MCFM LO at LHC

                              ( No parton-to-particle-level corrections applied )    

2

   
[1

 / 
G

eV
]  

 
 je

t)
 

 th
(N

T
 d

 p
|

* γ
Z

/
σ

d 
 × | * γ

Z
/

σ |
1

 

-610

-510

-410

-310

-210

2

   
[1

 / 
G

eV
]  

 
 je

t)
 

 th
(N

T
 d

 p
|

* γ
Z

/
σ

d 
 × | * γ

Z
/

σ |
1

 

-610

-510

-410

-310

-210

 jet)  [GeV]   th (N
T

 p

20 30 40 100 200 300

 R
at

io
 : 

 L
H

C
  /

  T
ev

at
ro

n 
   

   
   

 

0.5

1

2

10

20

 jet)  [GeV]   th (N
T

 p

20 30 40 100 200 300

 R
at

io
 : 

 L
H

C
  /

  T
ev

at
ro

n 
   

   
   

 

0.5

1

2

10

20

Figure 11.1: The pjet
T spectra in Z/γ∗(→ e+e−)+jets events at LHC compared with those at

Tevatron, as predicted by fixed-order calculations from mcfm. The differential
cross sections are shown relative to the predicted jet-inclusive Z/γ∗ → e+e−

cross sections. No corrections for hadronization of the underlying event was
applied.
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Figure 11.2: The ratio of the pjet
T spectra predicted by sherpa, with and without the simu-

lation of multiple parton interactions, to those predicted by mcfm. The ratios
are shown for both the Teavatron and the LHC.

parton interaction models turned on and off. The impact of activating the sherpa multiple
parton interaction model is seen to be similar both for the Tevatron and LHC predictions.
Also, good agreement for the ratios to mcfm is seen between the sherpa predictions for
the two colliders, showing that sherpa and the fixed-order mcfm calculations extrapolate
similarly from Tevatron collisions to LHC collisions. The corresponding predictions from
alpgen+pythia using tune QW are given in Fig. 11.3. In contrast to sherpa, this generator
predicts a significant contribution from jets arising from multiple parton interactions at the
LHC for pjet

T below about 50 GeV. In absence of multiple parton interactions, the predicted
ratios to the mcfm predictions are found to agree well between LHC and Tevatron. The
large difference in the amount of multiple parton interactions generated by sherpa and
Q2-ordered pythia was studied in Ref. [120]. By adjusting the parameters of the models
in order to reproduced studies of the density of charged particles in dijet events [54] it was
found that the sherpa (Q2-ordered pythia using tune A) model needs on average 1.08 (6.35)
multiple parton interactions per event to describe data. This difference was interpreted as
reflecting the lack of hard, multi-jet events in the perturbative part of the pythia calculation
due to the soft/collinear approximation in the parton shower. In contrast, sherpa predicts
a higher density of charged particles stemming from the perturbatie calculation, thereby
requiring a smaller number of multiple parton interactions to describe the data. Based on
this, the parameters of the underlying event model in pythia should be rederived using the
full alpgen+pythia model, but to the knowledge of the author such a set of parameter
values is not currently available.

In the previous Chapter, the choice of renormalization scale for sherpa and alpgen+pythia

were varied in order to improve the agreement with the pjet
T spectra measured in data. Once

corresponding measurements are available from the LHC experiments a similar optimization
of parameters can be performed. For the Tevatron fixed-order NLO predictions were found
to offer both the best level of agreement with data, and the highest predictive power. The
prediction of NLO calculations for the LHC can therefore be assumed to deliver the best cur-
rently available estimation of the pjet

T spectra for Z/γ∗(→ e+e−)+jet production at LHC, and
these predictions can be used to optimize the choice of renormalization scale used for sherpa
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Figure 11.3: The ratio of the pjet
T spectra predicted by alpgen+pythia using tune QW (la-

belled alpgen+p), with and without the simulation of multiple parton interac-
tions, to those predicted by mcfm. The ratios are shown for both the Teavatron
and the LHC. At the LHC, a sizable contribution arising from multiple parton
interactions is predicted for pjet

T < 50 GeV.

and alpgen+pythia. For the following studies the hadronization and multiple parton in-
teraction models in sherpa and alpgen+pythia were deactivated. In Fig. 11.4 the ratio of
the pjet

T spectra predicted for LHC by sherpa to those from mcfm are given for the nominal
choice of µR as well as for upwards variations by factors of two and four. The latter choice
is found to give a ratio close to unity for the second and third jets, but a residual difference
in slope is seen for the leading jet. An upward variation of µR by a factor of four was also
found to give good agreement with mcfm for the two sub-leading jets at the Tevatron (see
Fig. 10.12). The difference in slope with respect to mcfm for the leading pjet

T spectrum was
also present at the Tevatron. For alpgen+pythia, agreement with mcfm to within 10% is
achieved for all three pjet

T spectra by scaling the nominal µR by 0.2. As a comparison, for
Tevatron a scaling the nominal µR by 0.5 (0.3) was found to give good agreement with mcfm

(data) (see Fig. 10.11).

11.2 Using ∆φ(dielectron,jet) to constrain the Cross Section for
Multiple Parton Interactions

The large differences between the predictions from sherpa and alpgen+pythia tune QW
of the amount of jets with pT < 50 GeV arising in Z/γ∗ events due to multiple parton in-
teractions indicates that early measurements which can help to constrain the amount of jets
arising due to such interactions are needed. Several planned searches for new particles at
the LHC are sensitive to the production rates of such low-pT jets, for instance searches for
the Higgs boson in the so-called vector boson fusion channel where the reconstruction of jets
down to 20 GeV is foreseen [8]. One possible observable which can be used to constrain
the cross section for jet production from multiple parton interactions is ∆φ(dielectron,jet),
inclusive in jets. Jets from multiple parton interactions are expected to have only a small
correlation with the dielectron system, and such jets should therefore give a flat contribution
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Figure 11.4: Ratios of the LHC predictions from sherpa to those from mcfm, corresponding
to the nominal choice of renormalization scale in sherpa, as well as to the
nominal choice multiplied with a factor of 2 or 4.
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Figure 11.5: Ratios of the LHC predictions from alpgen+pythia to those from mcfm, cor-
responding to the nominal choice of renormalization scale in alpgen+pythia,
as well as to the nominal choice multiplied with a factor of 0.5, 0.4, 0.3, 0.2 or
0.1.
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Figure 11.6: The normalized distribution of the jet-inclusive ∆φ(dielectron,jet) observable at
LHC, as predicted by sherpa and alpgen+pythia both with and without the
simulation of multiple parton interactions.

to ∆φ(dielectron,jet). The shape of this distribution is therefore sensitive to the amount of
jets arising from multiple parton interactions. The sherpa and alpgen+pythia predictions
for the inclusive ∆φ(dielectron,jet) distribution at LHC, with integral normalized to unity,
are shown in Fig. 11.6 with and without the simulation of multiple parton interactions. The
event selection used is the same as in the measurement presented in Sect. 9.22. For sherpa,
turning off the multiple parton interaction model changes the observable by less than 10%
over the whole range [0, π]. In contrast, the alpgen+pythia prediction decreases by a factor
of about two for ∆φ < 1.5 if the multiple parton interaction model is deactivated. As was
seen in the measurement presented in Chapter 9, the shape of the normalized, jet-inclusive
∆φ(dielectron,jet) observable has a significantly lower sensitivity to the uncertainty of the jet
energy-scale calibration than pjet

T measurements. The calibration of jet energies is expected to
be the main source of systematic uncertainty to jet measurements in the ATLAS experiment
at the LHC [8], in particular in the start-up phase. Assuming that the perturbative contri-
bution to this observable can be sufficintly well controlled, ∆φ(dielectron,jet) is a promising
observable for constraining the cross section for the associated production of Z/γ∗ and jets
arising from multiple parton interaction at an early stage of the LHC experiments.

166



Chapter 12

Summary and Conclusions

In this thesis several new measurements of the properties of jets produced in association with
a Z/γ∗ boson in pp̄ collisions at

√
s = 1.96 Tev have been presented. The analyzed data

sample has an integrated luminosity of 1.04 fb−1 and was registered by the DØ experiment
located at the Tevatron collider. The cross section for Z/γ∗(→ e+e−)+N jet production
was measured, differential in the transverse momentum of the N th jet in the event (N ≤ 3),
normalized to the inclusive cross section. These measurements represent an improvement
over earlier results in terms of reduced experimental uncertainties. The measurement for
N = 3 is the first of this observable in a hadron collider experiment. In addition, the cross
section for Z/γ∗(→ e+e−)+N jets (N ≥ 1) was measured, differential in the difference in
azimuthal angle between the di-electron system and any jet in the event and normalized to
unity. This is the first measurement of this observable performed at a hadron collider. Since
the measurements are fully corrected for the impact of the detector they can be compared
directly with theory predictions.

As a fundamental test of QCD the measured pjet
T spectra were compared with the predic-

tions of perturbative calculations at the next-to-leading order in the strong coupling constant,
available through the mcfm program. Good agreement between the next-to-leading order
predictions and the measurements was observed. This shows that the measurements are in
agreement with the Standard Model.

The presented measurements were also used to test the predictions of commonly used
event-generator models. sherpa and alpgen+pythia were found to offer a significantly
better description of the measurements than mc@nlo, pythia or herwig, thereby offering
the most accurate particle-level predictions of Z/γ∗(→ e+e−)+jet production currently avail-
able. Whereas alpgen+pythia was found to give a slightly better description of the shape
of the pT spectrum of the leading jet than sherpa, the opposite was the case for the shape
of the ∆φ(di-electron, jet) distribution. Neither generator correctly predicts the overall jet
rates. All the studied event generators show a significantly higher sensitivity to the choice
of factorization and renormalization scale than the next-to-leading-order calculations. This
reflects the leading-order nature of the event generators and corresponds to a reduced pre-
dictive power compared with the next-to-leading-order calculations. It was illustrated how
the overall jet rates predicted by sherpa and alpgen+pythia can be adjusted a posteri-
ori to improve the agreement with the measurements by multiplying the nominal choice of
renormalization scale with a constant factor.

Comparisons between the distributions of the difference in azimuthal angle between the
two leading jets in Z/γ∗(→ e+e−)+jets events reconstructed in data and in an event sample
generated using the Q2-ordered pythia model indicated the presence of a significant excess
of events with ∆φ(jet, jet) = π in the pythia sample. This excess was found to stem from
the model used by Q2-ordered pythia to simulate multiple parton interactions, presumably
arising from the lack of higher-order corrections to the generated 2→2 interactions in the
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form of a parton-shower algorithm. sherpa, using a multiple parton interaction model which
includes a parton-shower algorithm, is found to be in good agreement with data. Based on
particle-level studies, the same conclusion appears to be valid for the models implemented in
jimmy and in pT -ordered pythia.

At the LHC the cross sections for the associated production of jets with a Z/γ∗ boson will
be significantly larger than at the Tevatron. Consequently, it will be important to perform
measurements like those presented in this thesis at an early stage. Given the good agreement
observed between next-to-leading order calculations and the measurements at Tevatron, it can
be assumed that next-to-leading order calculations offer the most reliable predictions of the
perturbative part of the pjet

T spectra in Z/γ∗+jet production at the LHC currently available.
Motivated by this, it was illustrated how the renormalization scale choice in alpgen+pythia

and sherpa can be modified in order to adjust the overall jet rates of these generators to
agree with the predictions the next-to-leading-order calculations.

Determining the production rates of jets arising from multiple parton interactions is an
important task during the early stages of the LHC experiments. It was demonstrated that a
measurement of the shape of the ∆φ(di-electron, jet) distribution has the advantage of both
high sensitivity to the cross section of this jet production mode, and low sensitivity to the
uncertainty of the jet energy scale calibration. Assuming that the perturbative contribution
to the observable is sufficiently well controlled, this would allow for an early measurement of
the cross section for jet production from multiple parton interactions.
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